Shortcuts

DTypeCastTransform

class torchrl.envs.transforms.DTypeCastTransform(dtype_in: dtype, dtype_out: dtype, in_keys: Optional[Sequence[NestedKey]] = None, out_keys: Optional[Sequence[NestedKey]] = None, in_keys_inv: Optional[Sequence[NestedKey]] = None, out_keys_inv: Optional[Sequence[NestedKey]] = None)[source]

Casts one dtype to another for selected keys.

Depending on whether the in_keys or in_keys_inv are provided during construction, the class behavior will change:

  • If the keys are provided, those entries and those entries only will be transformed from dtype_in to dtype_out entries;

  • If the keys are not provided and the object is within an environment register of transforms, the input and output specs that have a dtype set to dtype_in will be used as in_keys_inv / in_keys respectively.

  • If the keys are not provided and the object is used without an environment, the forward / inverse pass will scan through the input tensordict for all dtype_in values and map them to a dtype_out tensor. For large data structures, this can impact performance as this scanning doesn’t come for free. The keys to be transformed will not be cached. Note that, in this case, the out_keys (resp. out_keys_inv) cannot be passed as the order on which the keys are processed cannot be anticipated precisely.

Parameters:
  • dtype_in (torch.dtype) – the input dtype (from the env).

  • dtype_out (torch.dtype) – the output dtype (for model training).

  • in_keys (sequence of NestedKey, optional) – list of dtype_in keys to be converted to dtype_out before being exposed to external objects and functions.

  • out_keys (sequence of NestedKey, optional) – list of destination keys. Defaults to in_keys if not provided.

  • in_keys_inv (sequence of NestedKey, optional) – list of dtype_out keys to be converted to dtype_in before being passed to the contained base_env or storage.

  • out_keys_inv (sequence of NestedKey, optional) – list of destination keys for inverse transform. Defaults to in_keys_inv if not provided.

Examples

>>> td = TensorDict(
...     {'obs': torch.ones(1, dtype=torch.double),
...     'not_transformed': torch.ones(1, dtype=torch.double),
... }, [])
>>> transform = DTypeCastTransform(torch.double, torch.float, in_keys=["obs"])
>>> _ = transform(td)
>>> print(td.get("obs").dtype)
torch.float32
>>> print(td.get("not_transformed").dtype)
torch.float64

In “automatic” mode, all float64 entries are transformed:

Examples

>>> td = TensorDict(
...     {'obs': torch.ones(1, dtype=torch.double),
...     'not_transformed': torch.ones(1, dtype=torch.double),
... }, [])
>>> transform = DTypeCastTransform(torch.double, torch.float)
>>> _ = transform(td)
>>> print(td.get("obs").dtype)
torch.float32
>>> print(td.get("not_transformed").dtype)
torch.float32

The same behavior is the rule when environments are constructedw without specifying the transform keys:

Examples

>>> class MyEnv(EnvBase):
...     def __init__(self):
...         super().__init__()
...         self.observation_spec = Composite(obs=Unbounded((), dtype=torch.float64))
...         self.action_spec = Unbounded((), dtype=torch.float64)
...         self.reward_spec = Unbounded((1,), dtype=torch.float64)
...         self.done_spec = Unbounded((1,), dtype=torch.bool)
...     def _reset(self, data=None):
...         return TensorDict({"done": torch.zeros((1,), dtype=torch.bool), **self.observation_spec.rand()}, [])
...     def _step(self, data):
...         assert data["action"].dtype == torch.float64
...         reward = self.reward_spec.rand()
...         done = torch.zeros((1,), dtype=torch.bool)
...         obs = self.observation_spec.rand()
...         assert reward.dtype == torch.float64
...         assert obs["obs"].dtype == torch.float64
...         return obs.empty().set("next", obs.update({"reward": reward, "done": done}))
...     def _set_seed(self, seed):
...         pass
>>> env = TransformedEnv(MyEnv(), DTypeCastTransform(torch.double, torch.float))
>>> assert env.action_spec.dtype == torch.float32
>>> assert env.observation_spec["obs"].dtype == torch.float32
>>> assert env.reward_spec.dtype == torch.float32, env.reward_spec.dtype
>>> print(env.rollout(2))
TensorDict(
    fields={
        action: Tensor(shape=torch.Size([2]), device=cpu, dtype=torch.float32, is_shared=False),
        done: Tensor(shape=torch.Size([2, 1]), device=cpu, dtype=torch.bool, is_shared=False),
        next: TensorDict(
            fields={
                done: Tensor(shape=torch.Size([2, 1]), device=cpu, dtype=torch.bool, is_shared=False),
                obs: Tensor(shape=torch.Size([2]), device=cpu, dtype=torch.float32, is_shared=False),
                reward: Tensor(shape=torch.Size([2, 1]), device=cpu, dtype=torch.float32, is_shared=False)},
            batch_size=torch.Size([2]),
            device=cpu,
            is_shared=False),
        obs: Tensor(shape=torch.Size([2]), device=cpu, dtype=torch.float32, is_shared=False)},
    batch_size=torch.Size([2]),
    device=cpu,
    is_shared=False)
>>> assert env.transform.in_keys == ["obs", "reward"]
>>> assert env.transform.in_keys_inv == ["action"]
forward(tensordict: TensorDictBase = None) TensorDictBase[source]

Reads the input tensordict, and for the selected keys, applies the transform.

transform_input_spec(input_spec: TensorSpec) TensorSpec[source]

Transforms the input spec such that the resulting spec matches transform mapping.

Parameters:

input_spec (TensorSpec) – spec before the transform

Returns:

expected spec after the transform

transform_observation_spec(observation_spec)[source]

Transforms the observation spec such that the resulting spec matches transform mapping.

Parameters:

observation_spec (TensorSpec) – spec before the transform

Returns:

expected spec after the transform

transform_output_spec(output_spec: Composite) Composite[source]

Transforms the output spec such that the resulting spec matches transform mapping.

This method should generally be left untouched. Changes should be implemented using transform_observation_spec(), transform_reward_spec() and transformfull_done_spec(). :param output_spec: spec before the transform :type output_spec: TensorSpec

Returns:

expected spec after the transform

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources