Shortcuts

BatchSizeTransform

class torchrl.envs.transforms.BatchSizeTransform(*, batch_size: Optional[Size] = None, reshape_fn: Optional[Callable[[TensorDictBase], TensorDictBase]] = None, reset_func: Optional[Callable[[TensorDictBase, TensorDictBase], TensorDictBase]] = None, env_kwarg: bool = False)[source]

A transform to modify the batch-size of an environmt.

This transform has two distinct usages: it can be used to set the batch-size for non-batch-locked (e.g. stateless) environments to enable data collection using data collectors. It can also be used to modify the batch-size of an environment (e.g. squeeze, unsqueeze or reshape).

This transform modifies the environment batch-size to match the one provided. It expects the parent environment batch-size to be expandable to the provided one.

Keyword Arguments:
  • batch_size (torch.Size or equivalent, optional) – the new batch-size of the environment. Exclusive with reshape_fn.

  • reshape_fn (callable, optional) –

    a callable to modify the environment batch-size. Exclusive with batch_size.

    Note

    Currently, transformations involving reshape, flatten, unflatten, squeeze and unsqueeze are supported. If another reshape operation is required, please submit a feature request on TorchRL github.

  • reset_func (callable, optional) – a function that produces a reset tensordict. The signature must match Callable[[TensorDictBase, TensorDictBase], TensorDictBase] where the first input argument is the optional tensordict passed to the environment during the call to reset() and the second is the output of TransformedEnv.base_env.reset. It can also support an optional env keyword argument if env_kwarg=True.

  • env_kwarg (bool, optional) – if True, reset_func must support a env keyword argument. Defaults to False. The env passed will be the env accompanied by its transform.

Example

>>> # Changing the batch-size with a function
>>> from torchrl.envs import GymEnv
>>> base_env = GymEnv("CartPole-v1")
>>> env = TransformedEnv(base_env, BatchSizeTransform(reshape_fn=lambda data: data.reshape(1, 1)))
>>> env.rollout(4)
>>> # Setting the shape of a stateless environment
>>> class MyEnv(EnvBase):
...     batch_locked = False
...     def __init__(self):
...         super().__init__()
...         self.observation_spec = Composite(observation=Unbounded(3))
...         self.reward_spec = Unbounded(1)
...         self.action_spec = Unbounded(1)
...
...     def _reset(self, tensordict: TensorDictBase, **kwargs) -> TensorDictBase:
...         tensordict_batch_size = tensordict.batch_size if tensordict is not None else torch.Size([])
...         result = self.observation_spec.rand(tensordict_batch_size)
...         result.update(self.full_done_spec.zero(tensordict_batch_size))
...         return result
...
...     def _step(
...         self,
...         tensordict: TensorDictBase,
...     ) -> TensorDictBase:
...         result = self.observation_spec.rand(tensordict.batch_size)
...         result.update(self.full_done_spec.zero(tensordict.batch_size))
...         result.update(self.full_reward_spec.zero(tensordict.batch_size))
...         return result
...
...     def _set_seed(self, seed: Optional[int]):
...         pass
...
>>> env = TransformedEnv(MyEnv(), BatchSizeTransform([5]))
>>> assert env.batch_size == torch.Size([5])
>>> assert env.rollout(10).shape == torch.Size([5, 10])

The reset_func can create a tensordict with the desired batch-size, allowing for a fine-grained reset call:

>>> def reset_func(tensordict, tensordict_reset, env):
...     result = env.observation_spec.rand()
...     result.update(env.full_done_spec.zero())
...     assert result.batch_size != torch.Size([])
...     return result
>>> env = TransformedEnv(MyEnv(), BatchSizeTransform([5], reset_func=reset_func, env_kwarg=True))
>>> print(env.rollout(2))
TensorDict(
    fields={
        action: Tensor(shape=torch.Size([5, 2, 1]), device=cpu, dtype=torch.float32, is_shared=False),
        done: Tensor(shape=torch.Size([5, 2, 1]), device=cpu, dtype=torch.bool, is_shared=False),
        next: TensorDict(
            fields={
                done: Tensor(shape=torch.Size([5, 2, 1]), device=cpu, dtype=torch.bool, is_shared=False),
                observation: Tensor(shape=torch.Size([5, 2, 3]), device=cpu, dtype=torch.float32, is_shared=False),
                reward: Tensor(shape=torch.Size([5, 2, 1]), device=cpu, dtype=torch.float32, is_shared=False),
                terminated: Tensor(shape=torch.Size([5, 2, 1]), device=cpu, dtype=torch.bool, is_shared=False)},
            batch_size=torch.Size([5, 2]),
            device=None,
            is_shared=False),
        observation: Tensor(shape=torch.Size([5, 2, 3]), device=cpu, dtype=torch.float32, is_shared=False),
        terminated: Tensor(shape=torch.Size([5, 2, 1]), device=cpu, dtype=torch.bool, is_shared=False)},
    batch_size=torch.Size([5, 2]),
    device=None,
    is_shared=False)

This transform can be used to deploy non-batch-locked environments within data collectors:

>>> from torchrl.collectors import SyncDataCollector
>>> collector = SyncDataCollector(env, lambda td: env.rand_action(td), frames_per_batch=10, total_frames=-1)
>>> for data in collector:
...     print(data)
...     break
TensorDict(
    fields={
        action: Tensor(shape=torch.Size([5, 2, 1]), device=cpu, dtype=torch.float32, is_shared=False),
        collector: TensorDict(
            fields={
                traj_ids: Tensor(shape=torch.Size([5, 2]), device=cpu, dtype=torch.int64, is_shared=False)},
            batch_size=torch.Size([5, 2]),
            device=None,
            is_shared=False),
        done: Tensor(shape=torch.Size([5, 2, 1]), device=cpu, dtype=torch.bool, is_shared=False),
        next: TensorDict(
            fields={
                done: Tensor(shape=torch.Size([5, 2, 1]), device=cpu, dtype=torch.bool, is_shared=False),
                observation: Tensor(shape=torch.Size([5, 2, 3]), device=cpu, dtype=torch.float32, is_shared=False),
                reward: Tensor(shape=torch.Size([5, 2, 1]), device=cpu, dtype=torch.float32, is_shared=False),
                terminated: Tensor(shape=torch.Size([5, 2, 1]), device=cpu, dtype=torch.bool, is_shared=False)},
            batch_size=torch.Size([5, 2]),
            device=None,
            is_shared=False),
        observation: Tensor(shape=torch.Size([5, 2, 3]), device=cpu, dtype=torch.float32, is_shared=False),
        terminated: Tensor(shape=torch.Size([5, 2, 1]), device=cpu, dtype=torch.bool, is_shared=False)},
    batch_size=torch.Size([5, 2]),
    device=None,
    is_shared=False)
>>> collector.shutdown()
forward(tensordict: TensorDictBase) TensorDictBase

Reads the input tensordict, and for the selected keys, applies the transform.

transform_env_batch_size(batch_size: Size)[source]

Transforms the batch-size of the parent env.

transform_input_spec(input_spec: Composite) Composite[source]

Transforms the input spec such that the resulting spec matches transform mapping.

Parameters:

input_spec (TensorSpec) – spec before the transform

Returns:

expected spec after the transform

transform_output_spec(output_spec: Composite) Composite[source]

Transforms the output spec such that the resulting spec matches transform mapping.

This method should generally be left untouched. Changes should be implemented using transform_observation_spec(), transform_reward_spec() and transformfull_done_spec(). :param output_spec: spec before the transform :type output_spec: TensorSpec

Returns:

expected spec after the transform

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources