GenDGRLExperienceReplay¶
- class torchrl.data.datasets.GenDGRLExperienceReplay(dataset_id: str, batch_size: Optional[int] = None, *, download: bool = True, root: Optional[str] = None, **kwargs)[source]¶
Gen-DGRL Experience Replay dataset.
This dataset accompanies the paper “The Generalization Gap in Offline Reinforcement Learning”.
Arxiv: https://arxiv.org/abs/2312.05742
GitHub: https://github.com/facebookresearch/gen_dgrl
The data format follows the TED convention.
This class gives you access to the ProcGen dataset. Each dataset_id registered in GenDGRLExperienceReplay.available_datasets consists in a particular task (“bigfish”, “bossfight”, …) separated from a category (“1M_E”, “1M_S”, …) by a comma (“bigfish-1M_E”, …).
During download and preparation, the data is downloaded as .tar files, where each trajectory is stored independently in a .npy file. Each of these files is extracted, written in a contiguous mmap tensor, and then cleared. This process can take several minutes per dataset. On a cluster, it is advisable to first run the download and preprocessing separately on different workers or processes for different datasets, and launch the training script in a second time.
- Parameters:
dataset_id (str) – the dataset to be downloaded. Must be part of
GenDGRLExperienceReplay.available_datasets
.batch_size (int, optional) – Batch-size used during sampling. Can be overridden by data.sample(batch_size) if necessary.
- Keyword Arguments:
root (Path or str, optional) – The
GenDGRLExperienceReplay
dataset root directory. The actual dataset memory-mapped files will be saved under <root>/<dataset_id>. If none is provided, it defaults to ``~/.cache/torchrl/gen_dgrl`.download (bool or str, optional) – Whether the dataset should be downloaded if not found. Defaults to
True
. Download can also be passed as"force"
, in which case the downloaded data will be overwritten.sampler (Sampler, optional) – the sampler to be used. If none is provided a default RandomSampler() will be used.
writer (Writer, optional) – the writer to be used. If none is provided a default RoundRobinWriter() will be used.
collate_fn (callable, optional) – merges a list of samples to form a mini-batch of Tensor(s)/outputs. Used when using batched loading from a map-style dataset.
pin_memory (bool) – whether pin_memory() should be called on the rb samples.
prefetch (int, optional) – number of next batches to be prefetched using multithreading.
transform (Transform, optional) – Transform to be executed when sample() is called. To chain transforms use the
Compose
class.
- Variables:
available_datasets – a list of accepted entries to be downloaded. These names correspond to the directory path in the huggingface dataset repository. If possible, the list will be dynamically retrieved from huggingface. If no internet connection is available, it a cached version will be used.
Examples
>>> import torch >>> torch.manual_seed(0) >>> from torchrl.data.datasets import GenDGRLExperienceReplay >>> d = GenDGRLExperienceReplay("bigfish-1M_E", batch_size=32) >>> for batch in d: ... break >>> print(batch)
- add(data: TensorDictBase) int ¶
Add a single element to the replay buffer.
- Parameters:
data (Any) – data to be added to the replay buffer
- Returns:
index where the data lives in the replay buffer.
- append_transform(transform: Transform, *, invert: bool = False) ReplayBuffer ¶
Appends transform at the end.
Transforms are applied in order when sample is called.
- Parameters:
transform (Transform) – The transform to be appended
- Keyword Arguments:
invert (bool, optional) – if
True
, the transform will be inverted (forward calls will be called during writing and inverse calls during reading). Defaults toFalse
.
Example
>>> rb = ReplayBuffer(storage=LazyMemmapStorage(10), batch_size=4) >>> data = TensorDict({"a": torch.zeros(10)}, [10]) >>> def t(data): ... data += 1 ... return data >>> rb.append_transform(t, invert=True) >>> rb.extend(data) >>> assert (data == 1).all()
- property data_path¶
Path to the dataset, including split.
- property data_path_root¶
Path to the dataset root.
- delete()¶
Deletes a dataset storage from disk.
- dumps(path)¶
Saves the replay buffer on disk at the specified path.
- Parameters:
path (Path or str) – path where to save the replay buffer.
Examples
>>> import tempfile >>> import tqdm >>> from torchrl.data import LazyMemmapStorage, TensorDictReplayBuffer >>> from torchrl.data.replay_buffers.samplers import PrioritizedSampler, RandomSampler >>> import torch >>> from tensordict import TensorDict >>> # Build and populate the replay buffer >>> S = 1_000_000 >>> sampler = PrioritizedSampler(S, 1.1, 1.0) >>> # sampler = RandomSampler() >>> storage = LazyMemmapStorage(S) >>> rb = TensorDictReplayBuffer(storage=storage, sampler=sampler) >>> >>> for _ in tqdm.tqdm(range(100)): ... td = TensorDict({"obs": torch.randn(100, 3, 4), "next": {"obs": torch.randn(100, 3, 4)}, "td_error": torch.rand(100)}, [100]) ... rb.extend(td) ... sample = rb.sample(32) ... rb.update_tensordict_priority(sample) >>> # save and load the buffer >>> with tempfile.TemporaryDirectory() as tmpdir: ... rb.dumps(tmpdir) ... ... sampler = PrioritizedSampler(S, 1.1, 1.0) ... # sampler = RandomSampler() ... storage = LazyMemmapStorage(S) ... rb_load = TensorDictReplayBuffer(storage=storage, sampler=sampler) ... rb_load.loads(tmpdir) ... assert len(rb) == len(rb_load)
- empty()¶
Empties the replay buffer and reset cursor to 0.
- extend(tensordicts: TensorDictBase) Tensor ¶
Extends the replay buffer with one or more elements contained in an iterable.
If present, the inverse transforms will be called.`
- Parameters:
data (iterable) – collection of data to be added to the replay buffer.
- Returns:
Indices of the data added to the replay buffer.
Warning
extend()
can have an ambiguous signature when dealing with lists of values, which should be interpreted either as PyTree (in which case all elements in the list will be put in a slice in the stored PyTree in the storage) or a list of values to add one at a time. To solve this, TorchRL makes the clear-cut distinction between list and tuple: a tuple will be viewed as a PyTree, a list (at the root level) will be interpreted as a stack of values to add one at a time to the buffer. ForListStorage
instances, only unbound elements can be provided (no PyTrees).
- insert_transform(index: int, transform: Transform, *, invert: bool = False) ReplayBuffer ¶
Inserts transform.
Transforms are executed in order when sample is called.
- Parameters:
index (int) – Position to insert the transform.
transform (Transform) – The transform to be appended
- Keyword Arguments:
invert (bool, optional) – if
True
, the transform will be inverted (forward calls will be called during writing and inverse calls during reading). Defaults toFalse
.
- loads(path)¶
Loads a replay buffer state at the given path.
The buffer should have matching components and be saved using
dumps()
.- Parameters:
path (Path or str) – path where the replay buffer was saved.
See
dumps()
for more info.
- preprocess(fn: Callable[[TensorDictBase], TensorDictBase], dim: int = 0, num_workers: int | None = None, *, chunksize: int | None = None, num_chunks: int | None = None, pool: mp.Pool | None = None, generator: torch.Generator | None = None, max_tasks_per_child: int | None = None, worker_threads: int = 1, index_with_generator: bool = False, pbar: bool = False, mp_start_method: str | None = None, num_frames: int | None = None, dest: str | Path) TensorStorage ¶
Preprocesses a dataset and returns a new storage with the formatted data.
The data transform must be unitary (work on a single sample of the dataset).
Args and Keyword Args are forwarded to
map()
.The dataset can subsequently be deleted using
delete()
.- Keyword Arguments:
dest (path or equivalent) – a path to the location of the new dataset.
num_frames (int, optional) – if provided, only the first num_frames will be transformed. This is useful to debug the transform at first.
Returns: A new storage to be used within a
ReplayBuffer
instance.Examples
>>> from torchrl.data.datasets import MinariExperienceReplay >>> >>> data = MinariExperienceReplay( ... list(MinariExperienceReplay.available_datasets)[0], ... batch_size=32 ... ) >>> print(data) MinariExperienceReplay( storages=TensorStorage(TensorDict( fields={ action: MemoryMappedTensor(shape=torch.Size([1000000, 8]), device=cpu, dtype=torch.float32, is_shared=True), episode: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.int64, is_shared=True), info: TensorDict( fields={ distance_from_origin: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), forward_reward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True), qpos: MemoryMappedTensor(shape=torch.Size([1000000, 15]), device=cpu, dtype=torch.float64, is_shared=True), qvel: MemoryMappedTensor(shape=torch.Size([1000000, 14]), device=cpu, dtype=torch.float64, is_shared=True), reward_ctrl: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), reward_forward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), reward_survive: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), success: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.bool, is_shared=True), x_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), x_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), y_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), y_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False), next: TensorDict( fields={ done: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True), info: TensorDict( fields={ distance_from_origin: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), forward_reward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True), qpos: MemoryMappedTensor(shape=torch.Size([1000000, 15]), device=cpu, dtype=torch.float64, is_shared=True), qvel: MemoryMappedTensor(shape=torch.Size([1000000, 14]), device=cpu, dtype=torch.float64, is_shared=True), reward_ctrl: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), reward_forward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), reward_survive: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), success: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.bool, is_shared=True), x_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), x_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), y_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), y_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False), observation: TensorDict( fields={ achieved_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True), desired_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True), observation: MemoryMappedTensor(shape=torch.Size([1000000, 27]), device=cpu, dtype=torch.float64, is_shared=True)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False), reward: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.float64, is_shared=True), terminated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True), truncated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False), observation: TensorDict( fields={ achieved_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True), desired_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True), observation: MemoryMappedTensor(shape=torch.Size([1000000, 27]), device=cpu, dtype=torch.float64, is_shared=True)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False)), samplers=RandomSampler, writers=ImmutableDatasetWriter(), batch_size=32, transform=Compose( ), collate_fn=<function _collate_id at 0x120e21dc0>) >>> from torchrl.envs import CatTensors, Compose >>> from tempfile import TemporaryDirectory >>> >>> cat_tensors = CatTensors( ... in_keys=[("observation", "observation"), ("observation", "achieved_goal"), ... ("observation", "desired_goal")], ... out_key="obs" ... ) >>> cat_next_tensors = CatTensors( ... in_keys=[("next", "observation", "observation"), ... ("next", "observation", "achieved_goal"), ... ("next", "observation", "desired_goal")], ... out_key=("next", "obs") ... ) >>> t = Compose(cat_tensors, cat_next_tensors) >>> >>> def func(td): ... td = td.select( ... "action", ... "episode", ... ("next", "done"), ... ("next", "observation"), ... ("next", "reward"), ... ("next", "terminated"), ... ("next", "truncated"), ... "observation" ... ) ... td = t(td) ... return td >>> with TemporaryDirectory() as tmpdir: ... new_storage = data.preprocess(func, num_workers=4, pbar=True, mp_start_method="fork", dest=tmpdir) ... rb = ReplayBuffer(storage=new_storage) ... print(rb) ReplayBuffer( storage=TensorStorage( data=TensorDict( fields={ action: MemoryMappedTensor(shape=torch.Size([1000000, 8]), device=cpu, dtype=torch.float32, is_shared=True), episode: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.int64, is_shared=True), next: TensorDict( fields={ done: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True), obs: MemoryMappedTensor(shape=torch.Size([1000000, 31]), device=cpu, dtype=torch.float64, is_shared=True), observation: TensorDict( fields={ }, batch_size=torch.Size([1000000]), device=cpu, is_shared=False), reward: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.float64, is_shared=True), terminated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True), truncated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False), obs: MemoryMappedTensor(shape=torch.Size([1000000, 31]), device=cpu, dtype=torch.float64, is_shared=True), observation: TensorDict( fields={ }, batch_size=torch.Size([1000000]), device=cpu, is_shared=False)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False), shape=torch.Size([1000000]), len=1000000, max_size=1000000), sampler=RandomSampler(), writer=RoundRobinWriter(cursor=0, full_storage=True), batch_size=None, collate_fn=<function _collate_id at 0x168406fc0>)
- register_load_hook(hook: Callable[[Any], Any])¶
Registers a load hook for the storage.
Note
Hooks are currently not serialized when saving a replay buffer: they must be manually re-initialized every time the buffer is created.
- register_save_hook(hook: Callable[[Any], Any])¶
Registers a save hook for the storage.
Note
Hooks are currently not serialized when saving a replay buffer: they must be manually re-initialized every time the buffer is created.
- sample(batch_size: Optional[int] = None, return_info: bool = False, include_info: Optional[bool] = None) TensorDictBase ¶
Samples a batch of data from the replay buffer.
Uses Sampler to sample indices, and retrieves them from Storage.
- Parameters:
batch_size (int, optional) – size of data to be collected. If none is provided, this method will sample a batch-size as indicated by the sampler.
return_info (bool) – whether to return info. If True, the result is a tuple (data, info). If False, the result is the data.
- Returns:
A tensordict containing a batch of data selected in the replay buffer. A tuple containing this tensordict and info if return_info flag is set to True.
- set_sampler(sampler: Sampler)¶
Sets a new sampler in the replay buffer and returns the previous sampler.
- set_storage(storage: Storage, collate_fn: Optional[Callable] = None)¶
Sets a new storage in the replay buffer and returns the previous storage.
- Parameters:
storage (Storage) – the new storage for the buffer.
collate_fn (callable, optional) – if provided, the collate_fn is set to this value. Otherwise it is reset to a default value.
- property write_count¶
The total number of items written so far in the buffer through add and extend.