Shortcuts

Source code for torchrl.record.loggers.utils

# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.


import os
import pathlib
import uuid
from datetime import datetime

from torchrl.record.loggers.common import Logger


[docs]def generate_exp_name(model_name: str, experiment_name: str) -> str: """Generates an ID (str) for the described experiment using UUID and current date.""" exp_name = "_".join( ( model_name, experiment_name, str(uuid.uuid4())[:8], datetime.now().strftime("%y_%m_%d-%H_%M_%S"), ) ) return exp_name
[docs]def get_logger( logger_type: str, logger_name: str, experiment_name: str, **kwargs ) -> Logger: """Get a logger instance of the provided `logger_type`. Args: logger_type (str): One of tensorboard / csv / wandb / mlflow. If empty, ``None`` is returned. logger_name (str): Name to be used as a log_dir experiment_name (str): Name of the experiment kwargs (dict[str]): might contain either `wandb_kwargs` or `mlflow_kwargs` """ if logger_type == "tensorboard": from torchrl.record.loggers.tensorboard import TensorboardLogger logger = TensorboardLogger(log_dir=logger_name, exp_name=experiment_name) elif logger_type == "csv": from torchrl.record.loggers.csv import CSVLogger logger = CSVLogger( log_dir=logger_name, exp_name=experiment_name, video_format="mp4" ) elif logger_type == "wandb": from torchrl.record.loggers.wandb import WandbLogger wandb_kwargs = kwargs.get("wandb_kwargs", {}) logger = WandbLogger( log_dir=logger_name, exp_name=experiment_name, **wandb_kwargs ) elif logger_type == "mlflow": from torchrl.record.loggers.mlflow import MLFlowLogger mlflow_kwargs = kwargs.get("mlflow_kwargs", {}) logger = MLFlowLogger( tracking_uri=pathlib.Path(os.path.abspath(logger_name)).as_uri(), exp_name=experiment_name, **mlflow_kwargs, ) elif logger_type in ("", None): return None else: raise NotImplementedError(f"Unsupported logger_type: '{logger_type}'") return logger

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources