Source code for torchrl.record.loggers.tensorboard
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import importlib.util
import os
from typing import Dict, Sequence, Union
from torch import Tensor
from .common import Logger
_has_tb = importlib.util.find_spec("tensorboard") is not None
_has_omgaconf = importlib.util.find_spec("omegaconf") is not None
[docs]class TensorboardLogger(Logger):
"""Wrapper for the Tensoarboard logger.
Args:
exp_name (str): The name of the experiment.
log_dir (str): the tensorboard log_dir. Defaults to ``td_logs``.
"""
def __init__(self, exp_name: str, log_dir: str = "tb_logs") -> None:
super().__init__(exp_name=exp_name, log_dir=log_dir)
# re-write log_dir
self.log_dir = self.experiment.log_dir
self._has_imported_moviepy = False
def _create_experiment(self) -> "SummaryWriter": # noqa
"""Creates a tensorboard experiment.
Args:
exp_name (str): The name of the experiment.
Returns:
SummaryWriter: The tensorboard experiment.
"""
if not _has_tb:
raise ImportError("torch.utils.tensorboard could not be imported")
from torch.utils.tensorboard import SummaryWriter
log_dir = str(os.path.join(self.log_dir, self.exp_name))
return SummaryWriter(log_dir=log_dir)
def log_scalar(self, name: str, value: float, step: int = None) -> None:
"""Logs a scalar value to the tensorboard.
Args:
name (str): The name of the scalar.
value (float): The value of the scalar.
step (int, optional): The step at which the scalar is logged. Defaults to None.
"""
self.experiment.add_scalar(name, value, global_step=step)
def log_video(self, name: str, video: Tensor, step: int = None, **kwargs) -> None:
"""Log videos inputs to the tensorboard.
Args:
name (str): The name of the video.
video (Tensor): The video to be logged.
step (int, optional): The step at which the video is logged. Defaults to None.
"""
# check for correct format of the video tensor ((N), T, C, H, W)
# check that the color channel (C) is either 1 or 3
if video.dim() != 5 or video.size(dim=2) not in {1, 3}:
raise Exception(
"Wrong format of the video tensor. Should be ((N), T, C, H, W)"
)
if not self._has_imported_moviepy:
try:
import moviepy # noqa
self._has_imported_moviepy = True
except ImportError:
raise Exception(
"moviepy not found, videos cannot be logged with TensorboardLogger"
)
self.experiment.add_video(
tag=name,
vid_tensor=video,
global_step=step,
**kwargs,
)
def log_hparams(self, cfg: Union["DictConfig", Dict]) -> None: # noqa: F821
"""Logs the hyperparameters of the experiment.
Args:
cfg (DictConfig or dict): The configuration of the experiment.
"""
if type(cfg) is not dict and _has_omgaconf:
if not _has_omgaconf:
raise ImportError(
"OmegaConf could not be imported. "
"Cannot log hydra configs without OmegaConf."
)
from omegaconf import OmegaConf
cfg = OmegaConf.to_container(cfg, resolve=True)
self.experiment.add_hparams(cfg, metric_dict={})
def __repr__(self) -> str:
return f"TensorboardLogger(experiment={self.experiment.__repr__()})"
def log_histogram(self, name: str, data: Sequence, **kwargs):
"""Add histogram to summary.
Args:
name (str): Data identifier
data (torch.Tensor, numpy.ndarray, or string/blobname): Values to build histogram
Keyword Args:
step (int): Global step value to record
bins (str): One of {‘tensorflow’,’auto’, ‘fd’, …}. This determines how the bins are made. You can find other options in: https://docs.scipy.org/doc/numpy/reference/generated/numpy.histogram.html
walltime (float): Optional override default walltime (time.time()) seconds after epoch of event
"""
global_step = kwargs.pop("step", None)
bins = kwargs.pop("bins")
walltime = kwargs.pop("walltime", None)
if len(kwargs):
raise TypeError(f"Unrecognised arguments {kwargs}.")
self.experiment.add_histogram(
tag=name, values=data, global_step=global_step, bins=bins, walltime=walltime
)