Source code for torchrl.objectives.gail
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import annotations
from dataclasses import dataclass
import torch
import torch.autograd as autograd
from tensordict import TensorDict, TensorDictBase, TensorDictParams
from tensordict.nn import dispatch, TensorDictModule
from tensordict.utils import NestedKey
from torchrl.objectives.common import LossModule
from torchrl.objectives.utils import _reduce
[docs]class GAILLoss(LossModule):
r"""TorchRL implementation of the Generative Adversarial Imitation Learning (GAIL) loss.
Presented in `"Generative Adversarial Imitation Learning" <https://arxiv.org/pdf/1606.03476>`
Args:
discriminator_network (TensorDictModule): stochastic actor
Keyword Args:
use_grad_penalty (bool, optional): Whether to use gradient penalty. Default: ``False``.
gp_lambda (float, optional): Gradient penalty lambda. Default: ``10``.
reduction (str, optional): Specifies the reduction to apply to the output:
``"none"`` | ``"mean"`` | ``"sum"``. ``"none"``: no reduction will be applied,
``"mean"``: the sum of the output will be divided by the number of
elements in the output, ``"sum"``: the output will be summed. Default: ``"mean"``.
"""
@dataclass
class _AcceptedKeys:
"""Maintains default values for all configurable tensordict keys.
This class defines which tensordict keys can be set using '.set_keys(key_name=key_value)' and their
default values.
Attributes:
expert_action (NestedKey): The input tensordict key where the action is expected.
Defaults to ``"action"``.
expert_observation (NestedKey): The tensordict key where the observation is expected.
Defaults to ``"observation"``.
collector_action (NestedKey): The tensordict key where the collector action is expected.
Defaults to ``"collector_action"``.
collector_observation (NestedKey): The tensordict key where the collector observation is expected.
Defaults to ``"collector_observation"``.
discriminator_pred (NestedKey): The tensordict key where the discriminator prediction is expected.
"""
expert_action: NestedKey = "action"
expert_observation: NestedKey = "observation"
collector_action: NestedKey = "collector_action"
collector_observation: NestedKey = "collector_observation"
discriminator_pred: NestedKey = "d_logits"
default_keys = _AcceptedKeys()
discriminator_network: TensorDictModule
discriminator_network_params: TensorDictParams
target_discriminator_network: TensorDictModule
target_discriminator_network_params: TensorDictParams
out_keys = [
"loss",
"gp_loss",
]
def __init__(
self,
discriminator_network: TensorDictModule,
*,
use_grad_penalty: bool = False,
gp_lambda: float = 10,
reduction: str = None,
) -> None:
self._in_keys = None
self._out_keys = None
if reduction is None:
reduction = "mean"
super().__init__()
# Discriminator Network
self.convert_to_functional(
discriminator_network,
"discriminator_network",
create_target_params=False,
)
self.loss_function = torch.nn.BCELoss(reduction="none")
self.use_grad_penalty = use_grad_penalty
self.gp_lambda = gp_lambda
self.reduction = reduction
def _set_in_keys(self):
keys = self.discriminator_network.in_keys
keys = set(keys)
keys.add(self.tensor_keys.expert_observation)
keys.add(self.tensor_keys.expert_action)
keys.add(self.tensor_keys.collector_observation)
keys.add(self.tensor_keys.collector_action)
self._in_keys = sorted(keys, key=str)
def _forward_value_estimator_keys(self, **kwargs) -> None:
pass
@property
def in_keys(self):
if self._in_keys is None:
self._set_in_keys()
return self._in_keys
@in_keys.setter
def in_keys(self, values):
self._in_keys = values
@property
def out_keys(self):
if self._out_keys is None:
keys = ["loss"]
if self.use_grad_penalty:
keys.append("gp_loss")
self._out_keys = keys
return self._out_keys
@out_keys.setter
def out_keys(self, values):
self._out_keys = values
[docs] @dispatch
def forward(
self,
tensordict: TensorDictBase,
) -> TensorDictBase:
"""The forward method.
Computes the discriminator loss and gradient penalty if `use_grad_penalty` is set to True. If `use_grad_penalty` is set to True, the detached gradient penalty loss is also returned for logging purposes.
To see what keys are expected in the input tensordict and what keys are expected as output, check the
class's `"in_keys"` and `"out_keys"` attributes.
"""
device = self.discriminator_network.device
tensordict = tensordict.clone(False)
shape = tensordict.shape
if len(shape) > 1:
batch_size, seq_len = shape
else:
batch_size = shape[0]
collector_obs = tensordict.get(self.tensor_keys.collector_observation)
collector_act = tensordict.get(self.tensor_keys.collector_action)
expert_obs = tensordict.get(self.tensor_keys.expert_observation)
expert_act = tensordict.get(self.tensor_keys.expert_action)
combined_obs_inputs = torch.cat([expert_obs, collector_obs], dim=0)
combined_act_inputs = torch.cat([expert_act, collector_act], dim=0)
combined_inputs = TensorDict(
{
self.tensor_keys.expert_observation: combined_obs_inputs,
self.tensor_keys.expert_action: combined_act_inputs,
},
batch_size=[2 * batch_size],
device=device,
)
# create
if len(shape) > 1:
fake_labels = torch.zeros((batch_size, seq_len, 1), dtype=torch.float32).to(
device
)
real_labels = torch.ones((batch_size, seq_len, 1), dtype=torch.float32).to(
device
)
else:
fake_labels = torch.zeros((batch_size, 1), dtype=torch.float32).to(device)
real_labels = torch.ones((batch_size, 1), dtype=torch.float32).to(device)
with self.discriminator_network_params.to_module(self.discriminator_network):
d_logits = self.discriminator_network(combined_inputs).get(
self.tensor_keys.discriminator_pred
)
expert_preds, collection_preds = torch.split(
d_logits, [batch_size, batch_size], dim=0
)
expert_loss = self.loss_function(expert_preds, real_labels)
collection_loss = self.loss_function(collection_preds, fake_labels)
loss = expert_loss + collection_loss
out = {}
if self.use_grad_penalty:
obs = tensordict.get(self.tensor_keys.collector_observation)
acts = tensordict.get(self.tensor_keys.collector_action)
obs_e = tensordict.get(self.tensor_keys.expert_observation)
acts_e = tensordict.get(self.tensor_keys.expert_action)
obss_noise = (
torch.distributions.Uniform(0.0, 1.0).sample(obs_e.shape).to(device)
)
acts_noise = (
torch.distributions.Uniform(0.0, 1.0).sample(acts_e.shape).to(device)
)
obss_mixture = obss_noise * obs + (1 - obss_noise) * obs_e
acts_mixture = acts_noise * acts + (1 - acts_noise) * acts_e
obss_mixture.requires_grad_(True)
acts_mixture.requires_grad_(True)
pg_input_td = TensorDict(
{
self.tensor_keys.expert_observation: obss_mixture,
self.tensor_keys.expert_action: acts_mixture,
},
[],
device=device,
)
with self.discriminator_network_params.to_module(
self.discriminator_network
):
d_logits_mixture = self.discriminator_network(pg_input_td).get(
self.tensor_keys.discriminator_pred
)
gradients = torch.cat(
autograd.grad(
outputs=d_logits_mixture,
inputs=(obss_mixture, acts_mixture),
grad_outputs=torch.ones(d_logits_mixture.size(), device=device),
create_graph=True,
retain_graph=True,
only_inputs=True,
),
dim=-1,
)
gp_loss = self.gp_lambda * torch.mean(
(torch.linalg.norm(gradients, dim=-1) - 1) ** 2
)
loss += gp_loss
out["gp_loss"] = gp_loss.detach()
loss = _reduce(loss, reduction=self.reduction)
out["loss"] = loss
td_out = TensorDict(out, [])
return td_out