Shortcuts

Source code for torchrl.modules.tensordict_module.world_models

# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.


from tensordict.nn import TensorDictModule, TensorDictSequential


[docs]class WorldModelWrapper(TensorDictSequential): """World model wrapper. This module wraps together a transition model and a reward model. The transition model is used to predict an imaginary world state. The reward model is used to predict the reward of the imagined transition. Args: transition_model (TensorDictModule): a transition model that generates a new world states. reward_model (TensorDictModule): a reward model, that reads the world state and returns a reward. """ def __init__( self, transition_model: TensorDictModule, reward_model: TensorDictModule ): super().__init__(transition_model, reward_model)
[docs] def get_transition_model_operator(self) -> TensorDictModule: """Returns a transition operator that maps either an observation to a world state or a world state to the next world state.""" return self.module[0]
[docs] def get_reward_operator(self) -> TensorDictModule: """Returns a reward operator that maps a world state to a reward.""" return self.module[1]

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources