Shortcuts

Source code for torchrl.envs.transforms.rlhf

# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from copy import copy, deepcopy

import torch
from tensordict import TensorDict, TensorDictBase, unravel_key
from tensordict.nn import ProbabilisticTensorDictModule, TensorDictParams
from tensordict.utils import is_seq_of_nested_key
from torch import nn
from torchrl.data.tensor_specs import CompositeSpec, UnboundedContinuousTensorSpec
from torchrl.envs.transforms.transforms import Transform
from torchrl.envs.transforms.utils import _set_missing_tolerance, _stateless_param


[docs]class KLRewardTransform(Transform): """A transform to add a KL[pi_current||pi_0] correction term to the reward. This transform is used to constrain the policy to remain close to its original configuration which limits overfitting when fine-tuning using RLHF. Args: actor (ProbabilisticTensorDictModule): a probabilistic actor. It must have the following features: it must have a set of input (``in_keys``) and output keys (``out_keys``). It must have a ``get_dist`` method that outputs the distribution of the action. coef (float): the coefficient of the KL term. Defaults to ``1.0``. in_keys (str or list of str/tuples of str): the input key where the reward should be fetched. Defaults to ``"reward"``. out_keys (str or list of str/tuples of str): the output key where the reward should be written. Defaults to ``"reward"``. requires_grad (bool, optional): if ``True``, the frozen parameters will consist of differentiable clones of the original params. Defaults to ``False``. .. note:: If the parameters are not differentiable (default), they will *not* follow the module when dtype or device casting operations will be called (such as :meth:`~.cuda`, :meth:`~.to` etc.). When ``requires_grad=True``, casting operations will work as expected. Examples: >>> from torchrl.envs.libs.gym import GymEnv >>> from torchrl.envs import TransformedEnv >>> from tensordict.nn import TensorDictModule as Mod, NormalParamExtractor >>> from torchrl.modules import ProbabilisticActor >>> from tensordict import TensorDict >>> from torchrl.modules.distributions import TanhNormal >>> from torch import nn >>> base_env = GymEnv("Pendulum-v1") >>> n_obs = base_env.observation_spec["observation"].shape[-1] >>> n_act = base_env.action_spec.shape[-1] >>> module = Mod( ... nn.Sequential(nn.Linear(n_obs, n_act * 2), NormalParamExtractor()), ... in_keys=["observation"], ... out_keys=["loc", "scale"], ... ) >>> actor = ProbabilisticActor( ... module, ... in_keys=["loc", "scale"], ... distribution_class=TanhNormal, ... return_log_prob=True, ... ) >>> transform = KLRewardTransform(actor, out_keys="reward_kl") >>> env = TransformedEnv(base_env, transform) >>> with torch.no_grad(): ... # modify the actor parameters ... _ = TensorDict(dict(actor.named_parameters()), []).apply_(lambda x: x.data.copy_(x.data + 1)) ... td = env.rollout(3, actor) >>> # check that rewards have been modified >>> assert (td.get(("next", "reward")) != td.get(("next", "reward_kl"))).all() .. note:: Because the KL formulat is not always available and the parameters of the original distribution may not have been recorded, we use a stochastic estimate of the KL divergence. """ DEFAULT_IN_KEYS = ["reward"] def __init__( self, actor: ProbabilisticTensorDictModule, coef=1.0, in_keys=None, out_keys=None, requires_grad=False, ): if in_keys is None: in_keys = self.DEFAULT_IN_KEYS if out_keys is None: out_keys = copy(in_keys) super().__init__(in_keys=in_keys, out_keys=out_keys) if not is_seq_of_nested_key(self.in_keys) or not is_seq_of_nested_key( self.out_keys ): raise ValueError( f"invalid in_keys / out_keys:\nin_keys={self.in_keys} \nout_keys={self.out_keys}" ) if len(self.in_keys) != 1 or len(self.out_keys) != 1: raise ValueError( f"Only one in_key/out_key is allowed, got in_keys={self.in_keys}, out_keys={self.out_keys}." ) # for convenience, convert out_keys to tuples self._out_keys = [ out_key if isinstance(out_key, tuple) else (out_key,) for out_key in self._out_keys ] # update the in_keys for dispatch etc self.in_keys = self.in_keys + actor.in_keys # check that the model has parameters params = TensorDict.from_module(actor) with params.apply( _stateless_param, device="meta", filter_empty=False ).to_module(actor): # copy a stateless actor self.__dict__["functional_actor"] = deepcopy(actor) # we need to register these params as buffer to have `to` and similar # methods work properly def _make_detached_param(x): if isinstance(x, nn.Parameter): # we need an nn.Parameter since some modules (RNN) require nn.Parameters return nn.Parameter(x.data.clone(), requires_grad=requires_grad) elif x.requires_grad: raise ValueError( "Encountered a value that requires gradients but is not an nn.Parameter instance." ) return x.clone() self.frozen_params = params.apply(_make_detached_param, filter_empty=False) if requires_grad: # includes the frozen params/buffers in the module parameters/buffers self.frozen_params = TensorDictParams(self.frozen_params, no_convert=True) # self._buffers["actor_params"] = params.clone().detach() # find the sample log-prob key self.sample_log_prob_key = "sample_log_prob" def find_sample_log_prob(module): if hasattr(module, "SAMPLE_LOG_PROB_KEY"): self.sample_log_prob_key = module.SAMPLE_LOG_PROB_KEY self.functional_actor.apply(find_sample_log_prob) if not isinstance(coef, torch.Tensor): coef = torch.as_tensor(coef) self.register_buffer("coef", coef) def _reset( self, tensordict: TensorDictBase, tensordict_reset: TensorDictBase ) -> TensorDictBase: with _set_missing_tolerance(self, True): tensordict_reset = self._call(tensordict_reset) return tensordict_reset def _call(self, tensordict: TensorDictBase) -> TensorDictBase: # run the actor on the tensordict action = tensordict.get("action", None) if action is None: # being called after reset or without action, skipping if self.out_keys[0] != ("reward",) and self.parent is not None: tensordict.set(self.out_keys[0], self.parent.reward_spec.zero()) return tensordict with self.frozen_params.to_module(self.functional_actor): dist = self.functional_actor.get_dist(tensordict.clone(False)) # get the log_prob given the original model log_prob = dist.log_prob(action) reward_key = self.in_keys[0] reward = tensordict.get("next").get(reward_key) curr_log_prob = tensordict.get(self.sample_log_prob_key) # we use the unbiased consistent estimator of the KL: log_p(x) - log_q(x) when x ~ p(x) kl = (curr_log_prob - log_prob).view_as(reward) tensordict.set(("next", *self.out_keys[0]), reward + self.coef * kl) return tensordict def _step( self, tensordict: TensorDictBase, next_tensordict: TensorDictBase ) -> TensorDictBase: with tensordict.unlock_(): return self._call(tensordict.set("next", next_tensordict)).pop("next") forward = _call
[docs] def transform_output_spec(self, output_spec: CompositeSpec) -> CompositeSpec: output_spec = super().transform_output_spec(output_spec) # todo: here we'll need to use the reward_key once it's implemented # parent = self.parent in_key = unravel_key(self.in_keys[0]) out_key = unravel_key(self.out_keys[0]) if in_key == "reward" and out_key == "reward": parent = self.parent reward_spec = UnboundedContinuousTensorSpec( device=output_spec.device, shape=output_spec["full_reward_spec"][parent.reward_key].shape, ) output_spec["full_reward_spec"] = CompositeSpec( {parent.reward_key: reward_spec}, shape=output_spec["full_reward_spec"].shape, ) elif in_key == "reward": parent = self.parent reward_spec = UnboundedContinuousTensorSpec( device=output_spec.device, shape=output_spec["full_reward_spec"][parent.reward_key].shape, ) # then we need to populate the output keys observation_spec = output_spec["full_observation_spec"] observation_spec[out_key] = reward_spec else: observation_spec = output_spec["full_observation_spec"] reward_spec = UnboundedContinuousTensorSpec( device=output_spec.device, shape=observation_spec[in_key].shape ) # then we need to populate the output keys observation_spec[out_key] = reward_spec return output_spec

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources