Source code for torchrl.envs.transforms.rb_transforms
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import annotations
from typing import List
import torch
from tensordict import NestedKey, TensorDictBase
from torchrl.data.postprocs.postprocs import _multi_step_func
from torchrl.envs.transforms.transforms import Transform
[docs]class MultiStepTransform(Transform):
"""A MultiStep transformation for ReplayBuffers.
This transform keeps the previous ``n_steps`` observations in a local buffer.
The inverse transform (called during :meth:`~torchrl.data.ReplayBuffer.extend`)
outputs the transformed previous ``n_steps`` with the ``T-n_steps`` current
frames.
All entries in the ``"next"`` tensordict that are not part of the ``done_keys``
or ``reward_keys`` will be mapped to their respective ``t + n_steps - 1``
correspondent.
This transform is a more hyperparameter resistant version of
:class:`~torchrl.data.postprocs.postprocs.MultiStep`:
the replay buffer transform will make the multi-step transform insensitive
to the collectors hyperparameters, whereas the post-process
version will output results that are sensitive to these
(because collectors have no memory of previous output).
Args:
n_steps (int): Number of steps in multi-step. The number of steps can be
dynamically changed by changing the ``n_steps`` attribute of this
transform.
gamma (float): Discount factor.
Keyword Args:
reward_keys (list of NestedKey, optional): the reward keys in the input tensordict.
The reward entries indicated by these keys will be accumulated and discounted
across ``n_steps`` steps in the future. A corresponding ``<reward_key>_orig``
entry will be written in the ``"next"`` entry of the output tensordict
to keep track of the original value of the reward.
Defaults to ``["reward"]``.
done_key (NestedKey, optional): the done key in the input tensordict, used to indicate
an end of trajectory.
Defaults to ``"done"``.
done_keys (list of NestedKey, optional): the list of end keys in the input tensordict.
All the entries indicated by these keys will be left untouched by the transform.
Defaults to ``["done", "truncated", "terminated"]``.
mask_key (NestedKey, optional): the mask key in the input tensordict.
The mask represents the valid frames in the input tensordict and
should have a shape that allows the input tensordict to be masked
with.
Defaults to ``"mask"``.
Examples:
>>> from torchrl.envs import GymEnv, TransformedEnv, StepCounter, MultiStepTransform, SerialEnv
>>> from torchrl.data import ReplayBuffer, LazyTensorStorage
>>> rb = ReplayBuffer(
... storage=LazyTensorStorage(100, ndim=2),
... transform=MultiStepTransform(n_steps=3, gamma=0.95)
... )
>>> base_env = SerialEnv(2, lambda: GymEnv("CartPole"))
>>> env = TransformedEnv(base_env, StepCounter())
>>> _ = env.set_seed(0)
>>> _ = torch.manual_seed(0)
>>> tdreset = env.reset()
>>> for _ in range(100):
... rollout = env.rollout(max_steps=50, break_when_any_done=False,
... tensordict=tdreset, auto_reset=False)
... indices = rb.extend(rollout)
... tdreset = rollout[..., -1]["next"]
>>> print("step_count", rb[:]["step_count"][:, :5])
step_count tensor([[[ 9],
[10],
[11],
[12],
[13]],
<BLANKLINE>
[[12],
[13],
[14],
[15],
[16]]])
>>> # The next step_count is 3 steps in the future
>>> print("next step_count", rb[:]["next", "step_count"][:, :5])
next step_count tensor([[[13],
[14],
[15],
[16],
[17]],
<BLANKLINE>
[[16],
[17],
[18],
[19],
[20]]])
"""
ENV_ERR = (
"The MultiStepTransform is only an inverse transform and can "
"be applied exclusively to replay buffers."
)
def __init__(
self,
n_steps,
gamma,
*,
reward_keys: List[NestedKey] | None = None,
done_key: NestedKey | None = None,
done_keys: List[NestedKey] | None = None,
mask_key: NestedKey | None = None,
):
super().__init__()
self.n_steps = n_steps
self.reward_keys = reward_keys
self.done_key = done_key
self.done_keys = done_keys
self.mask_key = mask_key
self.gamma = gamma
self._buffer = None
self._validated = False
@property
def n_steps(self):
"""The look ahead window of the transform.
This value can be dynamically edited during training.
"""
return self._n_steps
@n_steps.setter
def n_steps(self, value):
if not isinstance(value, int) or not (value >= 1):
raise ValueError(
"The value of n_steps must be a strictly positive integer."
)
self._n_steps = value
@property
def done_key(self):
return self._done_key
@done_key.setter
def done_key(self, value):
if value is None:
value = "done"
self._done_key = value
@property
def done_keys(self):
return self._done_keys
@done_keys.setter
def done_keys(self, value):
if value is None:
value = ["done", "terminated", "truncated"]
self._done_keys = value
@property
def reward_keys(self):
return self._reward_keys
@reward_keys.setter
def reward_keys(self, value):
if value is None:
value = [
"reward",
]
self._reward_keys = value
@property
def mask_key(self):
return self._mask_key
@mask_key.setter
def mask_key(self, value):
if value is None:
value = "mask"
self._mask_key = value
def _validate(self):
if self.parent is not None:
raise ValueError(self.ENV_ERR)
self._validated = True
def _inv_call(self, tensordict: TensorDictBase) -> TensorDictBase:
if not self._validated:
self._validate()
total_cat = self._append_tensordict(tensordict)
if total_cat.shape[-1] >= self.n_steps:
out = _multi_step_func(
total_cat,
done_key=self.done_key,
done_keys=self.done_keys,
reward_keys=self.reward_keys,
mask_key=self.mask_key,
n_steps=self.n_steps,
gamma=self.gamma,
)
return out[..., : -self.n_steps]
def _append_tensordict(self, data):
if self._buffer is None:
total_cat = data
self._buffer = data[..., -self.n_steps :].copy()
else:
total_cat = torch.cat([self._buffer, data], -1)
self._buffer = total_cat[..., -self.n_steps :].copy()
return total_cat