Source code for torchrl.envs.libs.vmas
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import annotations
import importlib.util
from typing import Dict, List, Optional, Union
import torch
from tensordict import LazyStackedTensorDict, TensorDict, TensorDictBase
from torchrl.data.tensor_specs import (
Bounded,
Categorical,
Composite,
DEVICE_TYPING,
MultiCategorical,
MultiOneHot,
OneHot,
StackedComposite,
TensorSpec,
Unbounded,
)
from torchrl.data.utils import numpy_to_torch_dtype_dict
from torchrl.envs.common import _EnvWrapper, EnvBase
from torchrl.envs.libs.gym import gym_backend, set_gym_backend
from torchrl.envs.utils import (
_classproperty,
_selective_unsqueeze,
check_marl_grouping,
MarlGroupMapType,
)
_has_vmas = importlib.util.find_spec("vmas") is not None
__all__ = ["VmasWrapper", "VmasEnv"]
def _get_envs():
if not _has_vmas:
raise ImportError("VMAS is not installed in your virtual environment.")
import vmas
all_scenarios = vmas.scenarios + vmas.mpe_scenarios + vmas.debug_scenarios
return all_scenarios
@set_gym_backend("gym")
def _vmas_to_torchrl_spec_transform(
spec,
device,
categorical_action_encoding,
) -> TensorSpec:
gym_spaces = gym_backend("spaces")
if isinstance(spec, gym_spaces.discrete.Discrete):
action_space_cls = Categorical if categorical_action_encoding else OneHot
dtype = (
numpy_to_torch_dtype_dict[spec.dtype]
if categorical_action_encoding
else torch.long
)
return action_space_cls(spec.n, device=device, dtype=dtype)
elif isinstance(spec, gym_spaces.multi_discrete.MultiDiscrete):
dtype = (
numpy_to_torch_dtype_dict[spec.dtype]
if categorical_action_encoding
else torch.long
)
return (
MultiCategorical(spec.nvec, device=device, dtype=dtype)
if categorical_action_encoding
else MultiOneHot(spec.nvec, device=device, dtype=dtype)
)
elif isinstance(spec, gym_spaces.Box):
shape = spec.shape
if not len(shape):
shape = torch.Size([1])
dtype = numpy_to_torch_dtype_dict[spec.dtype]
low = torch.tensor(spec.low, device=device, dtype=dtype)
high = torch.tensor(spec.high, device=device, dtype=dtype)
is_unbounded = low.isinf().all() and high.isinf().all()
return (
Unbounded(shape, device=device, dtype=dtype)
if is_unbounded
else Bounded(
low,
high,
shape,
dtype=dtype,
device=device,
)
)
elif isinstance(spec, gym_spaces.Dict):
spec_out = {}
for key in spec.keys():
spec_out[key] = _vmas_to_torchrl_spec_transform(
spec[key],
device=device,
categorical_action_encoding=categorical_action_encoding,
)
# the batch-size must be set later
return Composite(spec_out, device=device)
else:
raise NotImplementedError(
f"spec of type {type(spec).__name__} is currently unaccounted for vmas"
)
[docs]class VmasWrapper(_EnvWrapper):
"""Vmas environment wrapper.
GitHub: https://github.com/proroklab/VectorizedMultiAgentSimulator
Paper: https://arxiv.org/abs/2207.03530
Args:
env (``vmas.simulator.environment.environment.Environment``): the vmas environment to wrap.
Keyword Args:
num_envs (int): Number of vectorized simulation environments. VMAS perfroms vectorized simulations using PyTorch.
This argument indicates the number of vectorized environments that should be simulated in a batch. It will also
determine the batch size of the environment.
device (torch.device, optional): Device for simulation. Defaults to the default device. All the tensors created by VMAS
will be placed on this device.
continuous_actions (bool, optional): Whether to use continuous actions. Defaults to ``True``. If ``False``, actions
will be discrete. The number of actions and their size will depend on the chosen scenario.
See the VMAS repository for more info.
max_steps (int, optional): Horizon of the task. Defaults to ``None`` (infinite horizon). Each VMAS scenario can
be terminating or not. If ``max_steps`` is specified,
the scenario is also terminated (and the ``"terminated"`` flag is set) whenever this horizon is reached.
Unlike gym's ``TimeLimit`` transform or torchrl's :class:`~torchrl.envs.transforms.StepCounter`,
this argument will not set the ``"truncated"`` entry in the tensordict.
categorical_actions (bool, optional): if the environment actions are discrete, whether to transform
them to categorical or one-hot. Defaults to ``True``.
group_map (MarlGroupMapType or Dict[str, List[str]], optional): how to group agents in tensordicts for
input/output. By default, if the agent names follow the ``"<name>_<int>"``
convention, they will be grouped by ``"<name>"``. If they do not follow this convention, they will be all put
in one group named ``"agents"``.
Otherwise, a group map can be specified or selected from some premade options.
See :class:`~torchrl.envs.utils.MarlGroupMapType` for more info.
Attributes:
group_map (Dict[str, List[str]]): how to group agents in tensordicts for
input/output. See :class:`~torchrl.envs.utils.MarlGroupMapType` for more info.
agent_names (list of str): names of the agent in the environment
agent_names_to_indices_map (Dict[str, int]): dictionary mapping agent names to their index in the environment
unbatched_action_spec (TensorSpec): version of the spec without the vectorized dimension
unbatched_observation_spec (TensorSpec): version of the spec without the vectorized dimension
unbatched_reward_spec (TensorSpec): version of the spec without the vectorized dimension
het_specs (bool): whether the enviornment has any lazy spec
het_specs_map (Dict[str, bool]): dictionary mapping each group to a flag representing of the group has lazy specs
available_envs (List[str]): the list of the scenarios available to build.
.. warning::
VMAS returns a single ``done`` flag which does not distinguish between
when the env reached ``max_steps`` and termination.
If you deem the ``truncation`` signal necessary, set ``max_steps`` to
``None`` and use a :class:`~torchrl.envs.transforms.StepCounter` transform.
Examples:
>>> env = VmasWrapper(
... vmas.make_env(
... scenario="flocking",
... num_envs=32,
... continuous_actions=True,
... max_steps=200,
... device="cpu",
... seed=None,
... # Scenario kwargs
... n_agents=5,
... )
... )
>>> print(env.rollout(10))
TensorDict(
fields={
agents: TensorDict(
fields={
action: Tensor(shape=torch.Size([32, 10, 5, 2]), device=cpu, dtype=torch.float32, is_shared=False),
info: TensorDict(
fields={
agent_collision_rew: Tensor(shape=torch.Size([32, 10, 5, 1]), device=cpu, dtype=torch.float32, is_shared=False),
agent_distance_rew: Tensor(shape=torch.Size([32, 10, 5, 1]), device=cpu, dtype=torch.float32, is_shared=False)},
batch_size=torch.Size([32, 10, 5]),
device=cpu,
is_shared=False),
observation: Tensor(shape=torch.Size([32, 10, 5, 18]), device=cpu, dtype=torch.float32, is_shared=False)},
batch_size=torch.Size([32, 10, 5]),
device=cpu,
is_shared=False),
done: Tensor(shape=torch.Size([32, 10, 1]), device=cpu, dtype=torch.bool, is_shared=False),
next: TensorDict(
fields={
agents: TensorDict(
fields={
info: TensorDict(
fields={
agent_collision_rew: Tensor(shape=torch.Size([32, 10, 5, 1]), device=cpu, dtype=torch.float32, is_shared=False),
agent_distance_rew: Tensor(shape=torch.Size([32, 10, 5, 1]), device=cpu, dtype=torch.float32, is_shared=False)},
batch_size=torch.Size([32, 10, 5]),
device=cpu,
is_shared=False),
observation: Tensor(shape=torch.Size([32, 10, 5, 18]), device=cpu, dtype=torch.float32, is_shared=False),
reward: Tensor(shape=torch.Size([32, 10, 5, 1]), device=cpu, dtype=torch.float32, is_shared=False)},
batch_size=torch.Size([32, 10, 5]),
device=cpu,
is_shared=False),
done: Tensor(shape=torch.Size([32, 10, 1]), device=cpu, dtype=torch.bool, is_shared=False),
terminated: Tensor(shape=torch.Size([32, 10, 1]), device=cpu, dtype=torch.bool, is_shared=False)},
batch_size=torch.Size([32, 10]),
device=cpu,
is_shared=False),
terminated: Tensor(shape=torch.Size([32, 10, 1]), device=cpu, dtype=torch.bool, is_shared=False)},
batch_size=torch.Size([32, 10]),
device=cpu,
is_shared=False)
"""
git_url = "https://github.com/proroklab/VectorizedMultiAgentSimulator"
libname = "vmas"
@property
def lib(self):
import vmas
return vmas
@_classproperty
def available_envs(cls):
if not _has_vmas:
return []
return list(_get_envs())
def __init__(
self,
env: "vmas.simulator.environment.environment.Environment" = None, # noqa
categorical_actions: bool = True,
group_map: MarlGroupMapType | Dict[str, List[str]] | None = None,
**kwargs,
):
if env is not None:
kwargs["env"] = env
if "device" in kwargs.keys() and kwargs["device"] != str(env.device):
raise TypeError("Env device is different from vmas device")
kwargs["device"] = str(env.device)
self.group_map = group_map
self.categorical_actions = categorical_actions
super().__init__(**kwargs, allow_done_after_reset=True)
def _build_env(
self,
env: "vmas.simulator.environment.environment.Environment", # noqa
from_pixels: bool = False,
pixels_only: bool = False,
):
self.from_pixels = from_pixels
self.pixels_only = pixels_only
# TODO pixels
if self.from_pixels:
raise NotImplementedError("vmas rendering not yet implemented")
# Adjust batch size
if len(self.batch_size) == 0:
# Batch size not set
self.batch_size = torch.Size((env.num_envs,))
elif len(self.batch_size) == 1:
# Batch size is set
if not self.batch_size[0] == env.num_envs:
raise TypeError(
"Batch size used in constructor does not match vmas batch size."
)
else:
raise TypeError(
"Batch size used in constructor is not compatible with vmas."
)
return env
def _get_default_group_map(self, agent_names: List[str]):
# This function performs the default grouping in vmas.
# Agents with names "<name>_<int>" will be grouped in group name "<name>".
# If any of the agents does not follow the naming convention, we fall back
# back on having all agents in one group named "agents".
group_map = {}
follows_convention = True
for agent_name in agent_names:
# See if the agent follows the convention "<name>_<int>"
agent_name_split = agent_name.split("_")
if len(agent_name_split) == 1:
follows_convention = False
follows_convention = follows_convention and agent_name_split[-1].isdigit()
if not follows_convention:
break
# Group it with other agents that follow the same convention
group_name = "_".join(agent_name_split[:-1])
if group_name in group_map:
group_map[group_name].append(agent_name)
else:
group_map[group_name] = [agent_name]
if not follows_convention:
group_map = MarlGroupMapType.ALL_IN_ONE_GROUP.get_group_map(agent_names)
# For BC-compatibility rename the "agent" group to "agents"
if "agent" in group_map and len(group_map) == 1:
agent_group = group_map["agent"]
group_map["agents"] = agent_group
del group_map["agent"]
return group_map
def _make_specs(
self, env: "vmas.simulator.environment.environment.Environment" # noqa
) -> None:
# Create and check group map
self.agent_names = [agent.name for agent in self.agents]
self.agent_names_to_indices_map = {
agent.name: i for i, agent in enumerate(self.agents)
}
if self.group_map is None:
self.group_map = self._get_default_group_map(self.agent_names)
elif isinstance(self.group_map, MarlGroupMapType):
self.group_map = self.group_map.get_group_map(self.agent_names)
check_marl_grouping(self.group_map, self.agent_names)
self.unbatched_action_spec = Composite(device=self.device)
self.unbatched_observation_spec = Composite(device=self.device)
self.unbatched_reward_spec = Composite(device=self.device)
self.het_specs = False
self.het_specs_map = {}
for group in self.group_map.keys():
(
group_observation_spec,
group_action_spec,
group_reward_spec,
group_info_spec,
) = self._make_unbatched_group_specs(group)
self.unbatched_action_spec[group] = group_action_spec
self.unbatched_observation_spec[group] = group_observation_spec
self.unbatched_reward_spec[group] = group_reward_spec
if group_info_spec is not None:
self.unbatched_observation_spec[(group, "info")] = group_info_spec
group_het_specs = isinstance(
group_observation_spec, StackedComposite
) or isinstance(group_action_spec, StackedComposite)
self.het_specs_map[group] = group_het_specs
self.het_specs = self.het_specs or group_het_specs
self.unbatched_done_spec = Composite(
{
"done": Categorical(
n=2,
shape=torch.Size((1,)),
dtype=torch.bool,
device=self.device,
),
},
)
self.action_spec = self.unbatched_action_spec.expand(
*self.batch_size, *self.unbatched_action_spec.shape
)
self.observation_spec = self.unbatched_observation_spec.expand(
*self.batch_size, *self.unbatched_observation_spec.shape
)
self.reward_spec = self.unbatched_reward_spec.expand(
*self.batch_size, *self.unbatched_reward_spec.shape
)
self.done_spec = self.unbatched_done_spec.expand(
*self.batch_size, *self.unbatched_done_spec.shape
)
def _make_unbatched_group_specs(self, group: str):
# Agent specs
action_specs = []
observation_specs = []
reward_specs = []
info_specs = []
for agent_name in self.group_map[group]:
agent_index = self.agent_names_to_indices_map[agent_name]
agent = self.agents[agent_index]
action_specs.append(
Composite(
{
"action": _vmas_to_torchrl_spec_transform(
self.action_space[agent_index],
categorical_action_encoding=self.categorical_actions,
device=self.device,
) # shape = (n_actions_per_agent,)
},
)
)
observation_specs.append(
Composite(
{
"observation": _vmas_to_torchrl_spec_transform(
self.observation_space[agent_index],
device=self.device,
categorical_action_encoding=self.categorical_actions,
) # shape = (n_obs_per_agent,)
},
)
)
reward_specs.append(
Composite(
{
"reward": Unbounded(
shape=torch.Size((1,)),
device=self.device,
) # shape = (1,)
}
)
)
agent_info = self.scenario.info(agent)
if len(agent_info):
info_specs.append(
Composite(
{
key: Unbounded(
shape=_selective_unsqueeze(
value, batch_size=self.batch_size
).shape[1:],
device=self.device,
dtype=torch.float32,
)
for key, value in agent_info.items()
},
).to(self.device)
)
# Create multi-agent specs
group_action_spec = torch.stack(
action_specs, dim=0
) # shape = (n_agents, n_actions_per_agent)
group_observation_spec = torch.stack(
observation_specs, dim=0
) # shape = (n_agents, n_obs_per_agent)
group_reward_spec = torch.stack(reward_specs, dim=0) # shape = (n_agents, 1)
group_info_spec = None
if len(info_specs):
group_info_spec = torch.stack(info_specs, dim=0)
return (
group_observation_spec,
group_action_spec,
group_reward_spec,
group_info_spec,
)
def _check_kwargs(self, kwargs: Dict):
vmas = self.lib
if "env" not in kwargs:
raise TypeError("Could not find environment key 'env' in kwargs.")
env = kwargs["env"]
if not isinstance(env, vmas.simulator.environment.Environment):
raise TypeError(
"env is not of type 'vmas.simulator.environment.Environment'."
)
def _init_env(self) -> Optional[int]:
pass
def _set_seed(self, seed: Optional[int]):
self._env.seed(seed)
def _reset(
self, tensordict: Optional[TensorDictBase] = None, **kwargs
) -> TensorDictBase:
if tensordict is not None and "_reset" in tensordict.keys():
_reset = tensordict.get("_reset")
envs_to_reset = _reset.squeeze(-1)
if envs_to_reset.all():
self._env.reset(return_observations=False)
else:
for env_index, to_reset in enumerate(envs_to_reset):
if to_reset:
self._env.reset_at(env_index, return_observations=False)
else:
self._env.reset(return_observations=False)
obs, dones, infos = self._env.get_from_scenario(
get_observations=True,
get_infos=True,
get_rewards=False,
get_dones=True,
)
dones = self.read_done(dones)
source = {"done": dones, "terminated": dones.clone()}
for group, agent_names in self.group_map.items():
agent_tds = []
for agent_name in agent_names:
i = self.agent_names_to_indices_map[agent_name]
agent_obs = self.read_obs(obs[i])
agent_info = self.read_info(infos[i])
agent_td = TensorDict(
source={
"observation": agent_obs,
},
batch_size=self.batch_size,
device=self.device,
)
if agent_info is not None:
agent_td.set("info", agent_info)
agent_tds.append(agent_td)
agent_tds = LazyStackedTensorDict.maybe_dense_stack(agent_tds, dim=1)
if not self.het_specs_map[group]:
agent_tds = agent_tds.to_tensordict()
source.update({group: agent_tds})
tensordict_out = TensorDict(
source=source,
batch_size=self.batch_size,
device=self.device,
)
return tensordict_out
def _step(
self,
tensordict: TensorDictBase,
) -> TensorDictBase:
agent_indices = {}
action_list = []
n_agents = 0
for group, agent_names in self.group_map.items():
group_action = tensordict.get((group, "action"))
group_action_list = list(self.read_action(group_action, group=group))
agent_indices.update(
{
self.agent_names_to_indices_map[agent_name]: i + n_agents
for i, agent_name in enumerate(agent_names)
}
)
n_agents += len(agent_names)
action_list += group_action_list
action = [action_list[agent_indices[i]] for i in range(self.n_agents)]
obs, rews, dones, infos = self._env.step(action)
dones = self.read_done(dones)
source = {"done": dones, "terminated": dones.clone()}
for group, agent_names in self.group_map.items():
agent_tds = []
for agent_name in agent_names:
i = self.agent_names_to_indices_map[agent_name]
agent_obs = self.read_obs(obs[i])
agent_rew = self.read_reward(rews[i])
agent_info = self.read_info(infos[i])
agent_td = TensorDict(
source={
"observation": agent_obs,
"reward": agent_rew,
},
batch_size=self.batch_size,
device=self.device,
)
if agent_info is not None:
agent_td.set("info", agent_info)
agent_tds.append(agent_td)
agent_tds = LazyStackedTensorDict.maybe_dense_stack(agent_tds, dim=1)
if not self.het_specs_map[group]:
agent_tds = agent_tds.to_tensordict()
source.update({group: agent_tds})
tensordict_out = TensorDict(
source=source,
batch_size=self.batch_size,
device=self.device,
)
return tensordict_out
def read_obs(
self, observations: Union[Dict, torch.Tensor]
) -> Union[Dict, torch.Tensor]:
if isinstance(observations, torch.Tensor):
return _selective_unsqueeze(observations, batch_size=self.batch_size)
return TensorDict(
source={key: self.read_obs(value) for key, value in observations.items()},
batch_size=self.batch_size,
)
def read_info(self, infos: Dict[str, torch.Tensor]) -> torch.Tensor:
if len(infos) == 0:
return None
infos = TensorDict(
source={
key: _selective_unsqueeze(
value.to(torch.float32), batch_size=self.batch_size
)
for key, value in infos.items()
},
batch_size=self.batch_size,
device=self.device,
)
return infos
def read_done(self, done):
done = _selective_unsqueeze(done, batch_size=self.batch_size)
return done
def read_reward(self, rewards):
rewards = _selective_unsqueeze(rewards, batch_size=self.batch_size)
return rewards
def read_action(self, action, group: str = "agents"):
if not self.continuous_actions and not self.categorical_actions:
action = self.unbatched_action_spec[group, "action"].to_categorical(action)
agent_actions = action.unbind(dim=1)
return agent_actions
def __repr__(self) -> str:
return (
f"{self.__class__.__name__}(num_envs={self.num_envs}, n_agents={self.n_agents},"
f" batch_size={self.batch_size}, device={self.device})"
)
def to(self, device: DEVICE_TYPING) -> EnvBase:
self._env.to(device)
return super().to(device)
[docs]class VmasEnv(VmasWrapper):
"""Vmas environment wrapper.
GitHub: https://github.com/proroklab/VectorizedMultiAgentSimulator
Paper: https://arxiv.org/abs/2207.03530
Args:
scenario (str or vmas.simulator.scenario.BaseScenario): the vmas scenario to build.
Must be one of :attr:`~.available_envs`. For a description and rendering of available scenarios see
`the README <https://github.com/proroklab/VectorizedMultiAgentSimulator/tree/VMAS-1.3.3?tab=readme-ov-file#main-scenarios>`__.
Keyword Args:
num_envs (int): Number of vectorized simulation environments. VMAS perfroms vectorized simulations using PyTorch.
This argument indicates the number of vectorized environments that should be simulated in a batch. It will also
determine the batch size of the environment.
device (torch.device, optional): Device for simulation. Defaults to the defaultt device. All the tensors created by VMAS
will be placed on this device.
continuous_actions (bool, optional): Whether to use continuous actions. Defaults to ``True``. If ``False``, actions
will be discrete. The number of actions and their size will depend on the chosen scenario.
See the VMAS repositiory for more info.
max_steps (int, optional): Horizon of the task. Defaults to ``None`` (infinite horizon). Each VMAS scenario can
be terminating or not. If ``max_steps`` is specified,
the scenario is also terminated (and the ``"terminated"`` flag is set) whenever this horizon is reached.
Unlike gym's ``TimeLimit`` transform or torchrl's :class:`~torchrl.envs.transforms.StepCounter`,
this argument will not set the ``"truncated"`` entry in the tensordict.
categorical_actions (bool, optional): if the environment actions are discrete, whether to transform
them to categorical or one-hot. Defaults to ``True``.
group_map (MarlGroupMapType or Dict[str, List[str]], optional): how to group agents in tensordicts for
input/output. By default, if the agent names follow the ``"<name>_<int>"``
convention, they will be grouped by ``"<name>"``. If they do not follow this convention, they will be all put
in one group named ``"agents"``.
Otherwise, a group map can be specified or selected from some premade options.
See :class:`~torchrl.envs.utils.MarlGroupMapType` for more info.
**kwargs (Dict, optional): These are additional arguments that can be passed to the VMAS scenario constructor.
(e.g., number of agents, reward sparsity). The available arguments will vary based on the chosen scenario.
To see the available arguments for a specific scenario, see the constructor in its file from
`the scenario folder <https://github.com/proroklab/VectorizedMultiAgentSimulator/tree/VMAS-1.3.3/vmas/scenarios>`__.
Attributes:
group_map (Dict[str, List[str]]): how to group agents in tensordicts for
input/output. See :class:`~torchrl.envs.utils.MarlGroupMapType` for more info.
agent_names (list of str): names of the agent in the environment
agent_names_to_indices_map (Dict[str, int]): dictionary mapping agent names to their index in the enviornment
unbatched_action_spec (TensorSpec): version of the spec without the vectorized dimension
unbatched_observation_spec (TensorSpec): version of the spec without the vectorized dimension
unbatched_reward_spec (TensorSpec): version of the spec without the vectorized dimension
het_specs (bool): whether the enviornment has any lazy spec
het_specs_map (Dict[str, bool]): dictionary mapping each group to a flag representing of the group has lazy specs
available_envs (List[str]): the list of the scenarios available to build.
.. warning::
VMAS returns a single ``done`` flag which does not distinguish between
when the env reached ``max_steps`` and termination.
If you deem the ``truncation`` signal necessary, set ``max_steps`` to
``None`` and use a :class:`~torchrl.envs.transforms.StepCounter` transform.
Examples:
>>> env = VmasEnv(
... scenario="flocking",
... num_envs=32,
... continuous_actions=True,
... max_steps=200,
... device="cpu",
... seed=None,
... # Scenario kwargs
... n_agents=5,
... )
>>> print(env.rollout(10))
TensorDict(
fields={
agents: TensorDict(
fields={
action: Tensor(shape=torch.Size([32, 10, 5, 2]), device=cpu, dtype=torch.float32, is_shared=False),
info: TensorDict(
fields={
agent_collision_rew: Tensor(shape=torch.Size([32, 10, 5, 1]), device=cpu, dtype=torch.float32, is_shared=False),
agent_distance_rew: Tensor(shape=torch.Size([32, 10, 5, 1]), device=cpu, dtype=torch.float32, is_shared=False)},
batch_size=torch.Size([32, 10, 5]),
device=cpu,
is_shared=False),
observation: Tensor(shape=torch.Size([32, 10, 5, 18]), device=cpu, dtype=torch.float32, is_shared=False)},
batch_size=torch.Size([32, 10, 5]),
device=cpu,
is_shared=False),
done: Tensor(shape=torch.Size([32, 10, 1]), device=cpu, dtype=torch.bool, is_shared=False),
next: TensorDict(
fields={
agents: TensorDict(
fields={
info: TensorDict(
fields={
agent_collision_rew: Tensor(shape=torch.Size([32, 10, 5, 1]), device=cpu, dtype=torch.float32, is_shared=False),
agent_distance_rew: Tensor(shape=torch.Size([32, 10, 5, 1]), device=cpu, dtype=torch.float32, is_shared=False)},
batch_size=torch.Size([32, 10, 5]),
device=cpu,
is_shared=False),
observation: Tensor(shape=torch.Size([32, 10, 5, 18]), device=cpu, dtype=torch.float32, is_shared=False),
reward: Tensor(shape=torch.Size([32, 10, 5, 1]), device=cpu, dtype=torch.float32, is_shared=False)},
batch_size=torch.Size([32, 10, 5]),
device=cpu,
is_shared=False),
done: Tensor(shape=torch.Size([32, 10, 1]), device=cpu, dtype=torch.bool, is_shared=False),
terminated: Tensor(shape=torch.Size([32, 10, 1]), device=cpu, dtype=torch.bool, is_shared=False)},
batch_size=torch.Size([32, 10]),
device=cpu,
is_shared=False),
terminated: Tensor(shape=torch.Size([32, 10, 1]), device=cpu, dtype=torch.bool, is_shared=False)},
batch_size=torch.Size([32, 10]),
device=cpu,
is_shared=False)
"""
def __init__(
self,
scenario: Union[str, "vmas.simulator.scenario.BaseScenario"], # noqa
*,
num_envs: int,
continuous_actions: bool = True,
max_steps: Optional[int] = None,
categorical_actions: bool = True,
seed: Optional[int] = None,
group_map: MarlGroupMapType | Dict[str, List[str]] | None = None,
**kwargs,
):
if not _has_vmas:
raise ImportError(
f"vmas python package was not found. Please install this dependency. "
f"More info: {self.git_url}."
)
super().__init__(
scenario=scenario,
num_envs=num_envs,
continuous_actions=continuous_actions,
max_steps=max_steps,
seed=seed,
categorical_actions=categorical_actions,
group_map=group_map,
**kwargs,
)
def _check_kwargs(self, kwargs: Dict):
if "scenario" not in kwargs:
raise TypeError("Could not find environment key 'scenario' in kwargs.")
if "num_envs" not in kwargs:
raise TypeError("Could not find environment key 'num_envs' in kwargs.")
def _build_env(
self,
scenario: Union[str, "vmas.simulator.scenario.BaseScenario"], # noqa
num_envs: int,
continuous_actions: bool,
max_steps: Optional[int],
seed: Optional[int],
**scenario_kwargs,
) -> "vmas.simulator.environment.environment.Environment": # noqa
vmas = self.lib
self.scenario_name = scenario
from_pixels = scenario_kwargs.pop("from_pixels", False)
pixels_only = scenario_kwargs.pop("pixels_only", False)
return super()._build_env(
env=vmas.make_env(
scenario=scenario,
num_envs=num_envs,
device=self.device
if self.device is not None
else torch.get_default_device(),
continuous_actions=continuous_actions,
max_steps=max_steps,
seed=seed,
wrapper=None,
**scenario_kwargs,
),
pixels_only=pixels_only,
from_pixels=from_pixels,
)
def __repr__(self):
return f"{super().__repr__()} (scenario={self.scenario_name})"