Shortcuts

EndOfLifeTransform

class torchrl.envs.transforms.EndOfLifeTransform(eol_key: Union[str, Tuple[str, ...]] = 'end-of-life', lives_key: Union[str, Tuple[str, ...]] = 'lives', done_key: Union[str, Tuple[str, ...]] = 'done', eol_attribute='unwrapped.ale.lives')[source]

Registers the end-of-life signal from a Gym env with a lives method.

Proposed by DeepMind for the DQN and co. It helps value estimation.

Parameters:
  • eol_key (NestedKey, optional) – the key where the end-of-life signal should be written. Defaults to "end-of-life".

  • done_key (NestedKey, optional) – a “done” key in the parent env done_spec, where the done value can be retrieved. This key must be unique and its shape must match the shape of the end-of-life entry. Defaults to "done".

  • eol_attribute (str, optional) – the location of the “lives” in the gym env. Defaults to "unwrapped.ale.lives". Supported attribute types are integer/array-like objects or callables that return these values.

Note

This transform should be used with gym envs that have a env.unwrapped.ale.lives.

Examples

>>> from torchrl.envs.libs.gym import GymEnv
>>> from torchrl.envs.transforms.transforms import TransformedEnv
>>> env = GymEnv("ALE/Breakout-v5")
>>> env.rollout(100)
TensorDict(
    fields={
        action: Tensor(shape=torch.Size([100, 4]), device=cpu, dtype=torch.int64, is_shared=False),
        done: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False),
        next: TensorDict(
            fields={
                done: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False),
                pixels: Tensor(shape=torch.Size([100, 210, 160, 3]), device=cpu, dtype=torch.uint8, is_shared=False),
                reward: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.float32, is_shared=False),
                terminated: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False),
                truncated: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False)},
            batch_size=torch.Size([100]),
            device=cpu,
            is_shared=False),
        pixels: Tensor(shape=torch.Size([100, 210, 160, 3]), device=cpu, dtype=torch.uint8, is_shared=False),
        terminated: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False),
        truncated: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False)},
    batch_size=torch.Size([100]),
    device=cpu,
    is_shared=False)
>>> eol_transform = EndOfLifeTransform()
>>> env = TransformedEnv(env, eol_transform)
>>> env.rollout(100)
TensorDict(
    fields={
        action: Tensor(shape=torch.Size([100, 4]), device=cpu, dtype=torch.int64, is_shared=False),
        done: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False),
        eol: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False),
        lives: Tensor(shape=torch.Size([100]), device=cpu, dtype=torch.int64, is_shared=False),
        next: TensorDict(
            fields={
                done: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False),
                end-of-life: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False),
                lives: Tensor(shape=torch.Size([100]), device=cpu, dtype=torch.int64, is_shared=False),
                pixels: Tensor(shape=torch.Size([100, 210, 160, 3]), device=cpu, dtype=torch.uint8, is_shared=False),
                reward: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.float32, is_shared=False),
                terminated: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False),
                truncated: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False)},
            batch_size=torch.Size([100]),
            device=cpu,
            is_shared=False),
        pixels: Tensor(shape=torch.Size([100, 210, 160, 3]), device=cpu, dtype=torch.uint8, is_shared=False),
        terminated: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False),
        truncated: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False)},
    batch_size=torch.Size([100]),
    device=cpu,
    is_shared=False)

The typical usage of this transform is to replace the “done” state by “end-of-life” within the loss module. The end-of-life signal isn’t registered within the done_spec because it should not instruct the env to reset.

Examples

>>> from torchrl.objectives import DQNLoss
>>> module = torch.nn.Identity() # used as a placeholder
>>> loss = DQNLoss(module, action_space="categorical")
>>> loss.set_keys(done="end-of-life", terminated="end-of-life")
>>> # equivalently
>>> eol_transform.register_keys(loss)
forward(tensordict: TensorDictBase) TensorDictBase[source]

Reads the input tensordict, and for the selected keys, applies the transform.

register_keys(loss_or_advantage: LossModule)[source]

Registers the end-of-life key at appropriate places within the loss.

Parameters:

loss_or_advantage (torchrl.objectives.LossModule or torchrl.objectives.value.ValueEstimatorBase) – a module to instruct what the end-of-life key is.

transform_observation_spec(observation_spec)[source]

Transforms the observation spec such that the resulting spec matches transform mapping.

Parameters:

observation_spec (TensorSpec) – spec before the transform

Returns:

expected spec after the transform

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources