Shortcuts

Source code for torchrl.envs.transforms.gym_transforms

# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

"""Gym-specific transforms."""
import warnings

import torch
import torchrl.objectives.common
from tensordict import TensorDictBase
from tensordict.utils import expand_as_right, NestedKey
from torchrl.data.tensor_specs import UnboundedDiscreteTensorSpec

from torchrl.envs.transforms.transforms import FORWARD_NOT_IMPLEMENTED, Transform


[docs]class EndOfLifeTransform(Transform): """Registers the end-of-life signal from a Gym env with a `lives` method. Proposed by DeepMind for the DQN and co. It helps value estimation. Args: eol_key (NestedKey, optional): the key where the end-of-life signal should be written. Defaults to ``"end-of-life"``. done_key (NestedKey, optional): a "done" key in the parent env done_spec, where the done value can be retrieved. This key must be unique and its shape must match the shape of the end-of-life entry. Defaults to ``"done"``. eol_attribute (str, optional): the location of the "lives" in the gym env. Defaults to ``"unwrapped.ale.lives"``. Supported attribute types are integer/array-like objects or callables that return these values. .. note:: This transform should be used with gym envs that have a ``env.unwrapped.ale.lives``. Examples: >>> from torchrl.envs.libs.gym import GymEnv >>> from torchrl.envs.transforms.transforms import TransformedEnv >>> env = GymEnv("ALE/Breakout-v5") >>> env.rollout(100) TensorDict( fields={ action: Tensor(shape=torch.Size([100, 4]), device=cpu, dtype=torch.int64, is_shared=False), done: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False), next: TensorDict( fields={ done: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False), pixels: Tensor(shape=torch.Size([100, 210, 160, 3]), device=cpu, dtype=torch.uint8, is_shared=False), reward: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.float32, is_shared=False), terminated: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False), truncated: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False)}, batch_size=torch.Size([100]), device=cpu, is_shared=False), pixels: Tensor(shape=torch.Size([100, 210, 160, 3]), device=cpu, dtype=torch.uint8, is_shared=False), terminated: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False), truncated: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False)}, batch_size=torch.Size([100]), device=cpu, is_shared=False) >>> eol_transform = EndOfLifeTransform() >>> env = TransformedEnv(env, eol_transform) >>> env.rollout(100) TensorDict( fields={ action: Tensor(shape=torch.Size([100, 4]), device=cpu, dtype=torch.int64, is_shared=False), done: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False), eol: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False), lives: Tensor(shape=torch.Size([100]), device=cpu, dtype=torch.int64, is_shared=False), next: TensorDict( fields={ done: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False), end-of-life: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False), lives: Tensor(shape=torch.Size([100]), device=cpu, dtype=torch.int64, is_shared=False), pixels: Tensor(shape=torch.Size([100, 210, 160, 3]), device=cpu, dtype=torch.uint8, is_shared=False), reward: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.float32, is_shared=False), terminated: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False), truncated: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False)}, batch_size=torch.Size([100]), device=cpu, is_shared=False), pixels: Tensor(shape=torch.Size([100, 210, 160, 3]), device=cpu, dtype=torch.uint8, is_shared=False), terminated: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False), truncated: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=False)}, batch_size=torch.Size([100]), device=cpu, is_shared=False) The typical usage of this transform is to replace the "done" state by "end-of-life" within the loss module. The end-of-life signal isn't registered within the ``done_spec`` because it should not instruct the env to reset. Examples: >>> from torchrl.objectives import DQNLoss >>> module = torch.nn.Identity() # used as a placeholder >>> loss = DQNLoss(module, action_space="categorical") >>> loss.set_keys(done="end-of-life", terminated="end-of-life") >>> # equivalently >>> eol_transform.register_keys(loss) """ NO_PARENT_ERR = "The {} transform is being executed without a parent env. This is currently not supported." def __init__( self, eol_key: NestedKey = "end-of-life", lives_key: NestedKey = "lives", done_key: NestedKey = "done", eol_attribute="unwrapped.ale.lives", ): super().__init__(in_keys=[done_key], out_keys=[eol_key, lives_key]) self.eol_key = eol_key self.lives_key = lives_key self.done_key = done_key self.eol_attribute = eol_attribute.split(".") def _get_lives(self): from torchrl.envs.libs.gym import GymWrapper base_env = self.parent.base_env if not isinstance(base_env, GymWrapper): warnings.warn( f"The base_env is not a gym env. Compatibility of {type(self)} is not guaranteed with " f"environment types that do not inherit from GymWrapper.", category=UserWarning, ) # getattr falls back on _env by default lives = getattr(base_env, self.eol_attribute[0]) for att in self.eol_attribute[1:]: if isinstance(lives, list): # For SerialEnv (and who knows Parallel one day) lives = [getattr(_lives, att) for _lives in lives] else: lives = getattr(lives, att) if callable(lives): lives = lives() elif isinstance(lives, list) and all(callable(_lives) for _lives in lives): lives = torch.as_tensor([_lives() for _lives in lives]) return lives def _call(self, tensordict: TensorDictBase) -> TensorDictBase: return tensordict def _step(self, tensordict, next_tensordict): parent = self.parent if parent is None: raise RuntimeError(self.NO_PARENT_ERR.format(type(self))) lives = self._get_lives() end_of_life = torch.as_tensor( tensordict.get(self.lives_key) > lives, device=self.parent.device ) try: done = next_tensordict.get(self.done_key) except KeyError: raise KeyError( f"The done value pointed by {self.done_key} cannot be found in tensordict with keys {tensordict.keys(True, True)}. " f"Make sure to pass the appropriate done_key to the {type(self)} transform." ) end_of_life = expand_as_right(end_of_life, done) | done next_tensordict.set(self.eol_key, end_of_life) next_tensordict.set(self.lives_key, lives) return next_tensordict def _reset(self, tensordict, tensordict_reset): parent = self.parent if parent is None: raise RuntimeError(self.NO_PARENT_ERR.format(type(self))) lives = self._get_lives() end_of_life = False tensordict_reset.set( self.eol_key, torch.as_tensor(end_of_life).expand( parent.full_done_spec[self.done_key].shape ), ) tensordict_reset.set(self.lives_key, lives) return tensordict_reset
[docs] def transform_observation_spec(self, observation_spec): full_done_spec = self.parent.output_spec["full_done_spec"] observation_spec[self.eol_key] = full_done_spec[self.done_key].clone() observation_spec[self.lives_key] = UnboundedDiscreteTensorSpec( self.parent.batch_size, device=self.parent.device, dtype=torch.int64, ) return observation_spec
[docs] def register_keys(self, loss_or_advantage: "torchrl.objectives.common.LossModule"): """Registers the end-of-life key at appropriate places within the loss. Args: loss_or_advantage (torchrl.objectives.LossModule or torchrl.objectives.value.ValueEstimatorBase): a module to instruct what the end-of-life key is. """ loss_or_advantage.set_keys(done=self.eol_key, terminated=self.eol_key)
[docs] def forward(self, tensordict: TensorDictBase) -> TensorDictBase: raise RuntimeError(FORWARD_NOT_IMPLEMENTED.format(type(self)))

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources