Shortcuts

TransformerDecoderLayer

class torch.nn.TransformerDecoderLayer(d_model, nhead, dim_feedforward=2048, dropout=0.1, activation=<function relu>, layer_norm_eps=1e-05, batch_first=False, norm_first=False, bias=True, device=None, dtype=None)[source][source]

TransformerDecoderLayer is made up of self-attn, multi-head-attn and feedforward network.

Note

See this tutorial for an in depth discussion of the performant building blocks PyTorch offers for building your own transformer layers.

This standard decoder layer is based on the paper “Attention Is All You Need”. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information Processing Systems, pages 6000-6010. Users may modify or implement in a different way during application.

Parameters
  • d_model (int) – the number of expected features in the input (required).

  • nhead (int) – the number of heads in the multiheadattention models (required).

  • dim_feedforward (int) – the dimension of the feedforward network model (default=2048).

  • dropout (float) – the dropout value (default=0.1).

  • activation (Union[str, Callable[[Tensor], Tensor]]) – the activation function of the intermediate layer, can be a string (“relu” or “gelu”) or a unary callable. Default: relu

  • layer_norm_eps (float) – the eps value in layer normalization components (default=1e-5).

  • batch_first (bool) – If True, then the input and output tensors are provided as (batch, seq, feature). Default: False (seq, batch, feature).

  • norm_first (bool) – if True, layer norm is done prior to self attention, multihead attention and feedforward operations, respectively. Otherwise it’s done after. Default: False (after).

  • bias (bool) – If set to False, Linear and LayerNorm layers will not learn an additive bias. Default: True.

Examples::
>>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8)
>>> memory = torch.rand(10, 32, 512)
>>> tgt = torch.rand(20, 32, 512)
>>> out = decoder_layer(tgt, memory)
Alternatively, when batch_first is True:
>>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8, batch_first=True)
>>> memory = torch.rand(32, 10, 512)
>>> tgt = torch.rand(32, 20, 512)
>>> out = decoder_layer(tgt, memory)
forward(tgt, memory, tgt_mask=None, memory_mask=None, tgt_key_padding_mask=None, memory_key_padding_mask=None, tgt_is_causal=False, memory_is_causal=False)[source][source]

Pass the inputs (and mask) through the decoder layer.

Parameters
  • tgt (Tensor) – the sequence to the decoder layer (required).

  • memory (Tensor) – the sequence from the last layer of the encoder (required).

  • tgt_mask (Optional[Tensor]) – the mask for the tgt sequence (optional).

  • memory_mask (Optional[Tensor]) – the mask for the memory sequence (optional).

  • tgt_key_padding_mask (Optional[Tensor]) – the mask for the tgt keys per batch (optional).

  • memory_key_padding_mask (Optional[Tensor]) – the mask for the memory keys per batch (optional).

  • tgt_is_causal (bool) – If specified, applies a causal mask as tgt mask. Default: False. Warning: tgt_is_causal provides a hint that tgt_mask is the causal mask. Providing incorrect hints can result in incorrect execution, including forward and backward compatibility.

  • memory_is_causal (bool) – If specified, applies a causal mask as memory mask. Default: False. Warning: memory_is_causal provides a hint that memory_mask is the causal mask. Providing incorrect hints can result in incorrect execution, including forward and backward compatibility.

Return type

Tensor

Shape:

see the docs in Transformer.

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources