Shortcuts

python.assert

dynamic_shape_assert

Note

Tags: python.assert

Support Level: SUPPORTED

Original source code:

# mypy: allow-untyped-defs
import torch

class DynamicShapeAssert(torch.nn.Module):
    """
    A basic usage of python assertion.
    """

    def forward(self, x):
        # assertion with error message
        assert x.shape[0] > 2, f"{x.shape[0]} is greater than 2"
        # assertion without error message
        assert x.shape[0] > 1
        return x

example_args = (torch.randn(3, 2),)
tags = {"python.assert"}
model = DynamicShapeAssert()


torch.export.export(model, example_args)

Result:

ExportedProgram:
    class GraphModule(torch.nn.Module):
        def forward(self, x: "f32[3, 2]"):
            return (x,)

Graph signature: ExportGraphSignature(input_specs=[InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='x'), target=None, persistent=None)], output_specs=[OutputSpec(kind=<OutputKind.USER_OUTPUT: 1>, arg=TensorArgument(name='x'), target=None)])
Range constraints: {}

list_contains

Note

Tags: python.assert, python.data-structure, torch.dynamic-shape

Support Level: SUPPORTED

Original source code:

# mypy: allow-untyped-defs
import torch

class ListContains(torch.nn.Module):
    """
    List containment relation can be checked on a dynamic shape or constants.
    """

    def forward(self, x):
        assert x.size(-1) in [6, 2]
        assert x.size(0) not in [4, 5, 6]
        assert "monkey" not in ["cow", "pig"]
        return x + x

example_args = (torch.randn(3, 2),)
tags = {"torch.dynamic-shape", "python.data-structure", "python.assert"}
model = ListContains()


torch.export.export(model, example_args)

Result:

ExportedProgram:
    class GraphModule(torch.nn.Module):
        def forward(self, x: "f32[3, 2]"):
                 add: "f32[3, 2]" = torch.ops.aten.add.Tensor(x, x);  x = None
            return (add,)

Graph signature: ExportGraphSignature(input_specs=[InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='x'), target=None, persistent=None)], output_specs=[OutputSpec(kind=<OutputKind.USER_OUTPUT: 1>, arg=TensorArgument(name='add'), target=None)])
Range constraints: {}

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources