Source code for torch.xpu.memory
import collections
from typing import Any, Dict, Tuple, Union
import torch
from torch.types import Device
from . import _get_device_index, is_initialized
_device_t = Union[Device, str, int, None]
[docs]def empty_cache() -> None:
r"""Release all unoccupied cached memory currently held by the caching
allocator so that those can be used in other XPU application.
.. note::
:func:`~torch.xpu.empty_cache` doesn't increase the amount of XPU
memory available for PyTorch. However, it may help reduce fragmentation
of XPU memory in certain cases.
"""
if is_initialized():
torch._C._xpu_emptyCache()
[docs]def reset_peak_memory_stats(device: _device_t = None) -> None:
r"""Reset the "peak" stats tracked by the XPU memory allocator.
See :func:`~torch.xpu.memory_stats` for details. Peak stats correspond to the
`"peak"` key in each individual stat dict.
Args:
device (torch.device or int or str, optional): selected device. Returns
statistic for the current device, given by :func:`~torch.xpu.current_device`,
if :attr:`device` is ``None`` (default).
"""
device = _get_device_index(device, optional=True)
return torch._C._xpu_resetPeakMemoryStats(device)
[docs]def reset_accumulated_memory_stats(device: _device_t = None) -> None:
r"""Reset the "accumulated" (historical) stats tracked by the XPU memory allocator.
See :func:`~torch.xpu.memory_stats` for details. Accumulated stats correspond to
the `"allocated"` and `"freed"` keys in each individual stat dict.
Args:
device (torch.device or int or str, optional): selected device. Returns
statistic for the current device, given by :func:`~torch.xpu.current_device`,
if :attr:`device` is ``None`` (default).
"""
device = _get_device_index(device, optional=True)
return torch._C._xpu_resetAccumulatedMemoryStats(device)
[docs]def memory_stats_as_nested_dict(device: _device_t = None) -> Dict[str, Any]:
r"""Return the result of :func:`~torch.xpu.memory_stats` as a nested dictionary."""
if not is_initialized():
return {}
device = _get_device_index(device, optional=True)
return torch._C._xpu_memoryStats(device)
[docs]def memory_stats(device: _device_t = None) -> Dict[str, Any]:
r"""Return a dictionary of XPU memory allocator statistics for a given device.
The return value of this function is a dictionary of statistics, each of
which is a non-negative integer.
Core statistics:
- ``"allocated_bytes.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``:
amount of allocated memory.
- ``"reserved_bytes.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``:
amount of reserved memory.
- ``"active_bytes.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``:
amount of active memory.
- ``"requested_bytes.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``:
memory requested by client code, compare this with allocated_bytes to check if
allocation rounding adds too much overhead.
For these core statistics, values are broken down as follows.
Pool type:
- ``all``: combined statistics across all memory pools.
- ``large_pool``: statistics for the large allocation pool (for size >= 1MB allocations).
- ``small_pool``: statistics for the small allocation pool (for size < 1MB allocations).
Metric type:
- ``current``: current value of this metric.
- ``peak``: maximum value of this metric.
- ``allocated``: historical total increase in this metric.
- ``freed``: historical total decrease in this metric.
Args:
device (torch.device or int or str, optional): selected device. Returns
statistics for the current device, given by :func:`~torch.xpu.current_device`,
if :attr:`device` is ``None`` (default).
"""
result = []
def _recurse_add_to_result(prefix: str, obj: Any) -> None:
if isinstance(obj, dict):
if len(prefix) > 0:
prefix += "."
for k, v in obj.items():
_recurse_add_to_result(prefix + k, v)
else:
result.append((prefix, obj))
stats = memory_stats_as_nested_dict(device=device)
_recurse_add_to_result("", stats)
result.sort()
return collections.OrderedDict(result)
[docs]def memory_allocated(device: _device_t = None) -> int:
r"""Return the current GPU memory occupied by tensors in bytes for a given device.
Args:
device (torch.device or int or str, optional): selected device. Returns
statistic for the current device, given by :func:`~torch.xpu.current_device`,
if :attr:`device` is ``None`` (default).
.. note::
This is likely less than the amount shown in `xpu-smi` since some
unused memory can be held by the caching allocator and some context
needs to be created on GPU.
"""
return memory_stats(device=device).get("allocated_bytes.all.current", 0)
[docs]def max_memory_allocated(device: _device_t = None) -> int:
r"""Return the maximum GPU memory occupied by tensors in bytes for a given device.
By default, this returns the peak allocated memory since the beginning of
this program. :func:`~torch.xpu.reset_peak_memory_stats` can be used to
reset the starting point in tracking this metric. For example, these two
functions can measure the peak allocated memory usage of each iteration in a
training loop.
Args:
device (torch.device or int or str, optional): selected device. Returns
statistic for the current device, given by :func:`~torch.xpu.current_device`,
if :attr:`device` is ``None`` (default).
"""
return memory_stats(device=device).get("allocated_bytes.all.peak", 0)
[docs]def memory_reserved(device: _device_t = None) -> int:
r"""Return the current GPU memory managed by the caching allocator in bytes for a given device.
Args:
device (torch.device or int or str, optional): selected device. Returns
statistic for the current device, given by :func:`~torch.xpu.current_device`,
if :attr:`device` is ``None`` (default).
"""
return memory_stats(device=device).get("reserved_bytes.all.current", 0)
[docs]def max_memory_reserved(device: _device_t = None) -> int:
r"""Return the maximum GPU memory managed by the caching allocator in bytes for a given device.
By default, this returns the peak cached memory since the beginning of this
program. :func:`~torch.xpu.reset_peak_memory_stats` can be used to reset
the starting point in tracking this metric. For example, these two functions
can measure the peak cached memory amount of each iteration in a training
loop.
Args:
device (torch.device or int or str, optional): selected device. Returns
statistic for the current device, given by :func:`~torch.xpu.current_device`,
if :attr:`device` is ``None`` (default).
"""
return memory_stats(device=device).get("reserved_bytes.all.peak", 0)
[docs]def mem_get_info(device: _device_t = None) -> Tuple[int, int]:
r"""Return the global free and total GPU memory for a given device.
Args:
device (torch.device or int or str, optional): selected device. Returns
statistic for the current device, given by :func:`~torch.xpu.current_device`,
if :attr:`device` is ``None`` (default).
Returns:
int: the memory available on the device in units of bytes.
int: the total memory on the device in units of bytes
"""
device = _get_device_index(device, optional=True)
return torch._C._xpu_getMemoryInfo(device)
__all__ = [
"empty_cache",
"max_memory_allocated",
"max_memory_reserved",
"mem_get_info",
"memory_allocated",
"memory_reserved",
"memory_stats",
"memory_stats_as_nested_dict",
"reset_accumulated_memory_stats",
"reset_peak_memory_stats",
]