# mypy: allow-untyped-decorators# mypy: allow-untyped-defs"""Base optimizer."""importfunctoolsimportwarningsfromcollectionsimportdefaultdict,OrderedDictfromcopyimportdeepcopyfromitertoolsimportchainfromtypingimport(Any,Callable,cast,DefaultDict,Dict,Hashable,Iterable,List,Optional,overload,Set,Tuple,TypeVar,Union,)fromtyping_extensionsimportParamSpec,Self,TypeAliasimporttorchimporttorch.utils.hooksashooksfromtorch.utils._foreach_utilsimport(_get_foreach_kernels_supported_devices,_get_fused_kernels_supported_devices,_group_tensors_by_device_and_dtype,Indices,TensorListList,)fromtorch.utils.hooksimportRemovableHandleArgs:TypeAlias=Tuple[Any,...]Kwargs:TypeAlias=Dict[str,Any]StateDict:TypeAlias=Dict[str,Any]DeviceDict=Dict[Optional[torch.device],torch.Tensor]DeviceDtypeDict=Dict[Optional[Tuple[torch.device,torch.dtype]],torch.Tensor]GlobalOptimizerPreHook:TypeAlias=Callable[["Optimizer",Args,Kwargs],Optional[Tuple[Args,Kwargs]]]GlobalOptimizerPostHook:TypeAlias=Callable[["Optimizer",Args,Kwargs],None]__all__=["Optimizer","register_optimizer_step_pre_hook","register_optimizer_step_post_hook",]_global_optimizer_pre_hooks:Dict[int,GlobalOptimizerPreHook]=OrderedDict()_global_optimizer_post_hooks:Dict[int,GlobalOptimizerPostHook]=OrderedDict()_foreach_supported_types=[torch.Tensor,torch.nn.parameter.Parameter]class_RequiredParameter:"""Singleton class representing a required parameter for an Optimizer."""def__repr__(self)->str:return"<required parameter>"required=_RequiredParameter()def_use_grad_for_differentiable(func):def_use_grad(self,*args,**kwargs):importtorch._dynamoprev_grad=torch.is_grad_enabled()try:# Note on graph break below:# we need to graph break to ensure that aot respects the no_grad annotation.# This is important for perf because without this, functionalization will generate an epilogue# which updates the mutated parameters of the optimizer which is *not* visible to inductor, as a result,# inductor will allocate for every parameter in the model, which is horrible.# With this, aot correctly sees that this is an inference graph, and functionalization will generate# an epilogue which is appended to the graph, which *is* visible to inductor, as a result, inductor sees that# step is in place and is able to avoid the extra allocation.# In the future, we will either 1) continue to graph break on backward, so this graph break does not matter# or 2) have a fully fused forward and backward graph, which will have no_grad by default, and we can remove this# graph break to allow the fully fused fwd-bwd-optimizer graph to be compiled.# see https://github.com/pytorch/pytorch/issues/104053torch.set_grad_enabled(self.defaults["differentiable"])torch._dynamo.graph_break()ret=func(self,*args,**kwargs)finally:torch._dynamo.graph_break()torch.set_grad_enabled(prev_grad)returnretfunctools.update_wrapper(_use_grad,func)return_use_graddef_get_value(x):# item is significantly faster than a cpu tensor in eager modeifnottorch.jit.is_scripting()andtorch.compiler.is_compiling():returnxelse:returnx.item()ifisinstance(x,torch.Tensor)elsexdef_stack_if_compiling(x):ifnottorch.jit.is_scripting()andtorch.compiler.is_compiling():returntorch.stack(x)else:returnxdef_disable_dynamo_if_unsupported(single_tensor_fn=None):# workaround for torchscript BC# it requires all called functions to be in the# global environment at the site at which the# maybe_fallback closure is createdifsingle_tensor_fn:globals()[single_tensor_fn.__name__]=single_tensor_fndefwrapper(func):importinspectdisabled_func=torch._disable_dynamo(func)ps=inspect.signature(func).parametershas_state_steps=Truetry:state_steps_ind=list(ps.keys()).index("state_steps")exceptValueError:has_state_steps=False# Today, there are cases where we stack state steps# and pass them as the value arg of foreach ops.# Having state steps on cuda as the value arg is not supported in eager,# but this only occurs in the rare case that the user explicitly deletes# the capturable flag. If capturable=True, this is not a problem.@functools.wraps(func)defmaybe_fallback(*args,**kwargs):iftorch.compiler.is_compiling()and(notkwargs.get("capturable",False)andhas_state_stepsand(args[state_steps_ind]andargs[state_steps_ind][0].is_cuda)or("state_steps"inkwargsandkwargs["state_steps"]andkwargs["state_steps"][0].is_cuda)):returndisabled_func(*args,**kwargs)else:returnfunc(*args,**kwargs)returnmaybe_fallbackreturnwrapper# For any optimizer with a faster implementation, we attempt to default to the# fastest + stablest whenever possible. For foreach, the requirements are to have# native params all on CUDA. For fused, there's currently the additional requirement# that the tensors' dtypes must be floating point. Neither alternative supports# torch.jit.script nor differentiable, so we fall back to the single tensor# implementation in those cases.def_default_to_fused_or_foreach(params:List[torch.Tensor],differentiable:bool,use_fused:bool=False)->Tuple[bool,bool]:iftorch.jit.is_scripting()ordifferentiable:returnFalse,Falsefused_supported_devices=_get_fused_kernels_supported_devices()foreach_supported_devices=_get_foreach_kernels_supported_devices()fused=use_fusedandall(pisNoneor(type(p)in_foreach_supported_typesandp.device.typeinfused_supported_devicesandtorch.is_floating_point(p))forpinparams)foreach=notfusedandall(pisNoneor(type(p)in_foreach_supported_typesandp.device.typeinforeach_supported_devices)forpinparams)returnfused,foreachdef_device_dtype_check_for_fused(p:torch.Tensor,cuda_unsupported:bool=False)->None:fused_supported_devices=_get_fused_kernels_supported_devices()ifcuda_unsupported:fused_supported_devices.remove("cuda")ifnot(p.device.typeinfused_supported_devicesandtorch.is_floating_point(p)):raiseRuntimeError("`fused=True` requires all the params to be floating point Tensors of "f"supported devices: {fused_supported_devices} but {p.dtype} and {p.device.type}")def_view_as_real(params,*state_and_grads):fori,pinenumerate(params):iftorch.is_complex(p):params[i]=torch.view_as_real(params[i])forsinstate_and_grads:s[i]=torch.view_as_real(s[i])def_get_scalar_dtype(is_fused=None):ifis_fused:returntorch.float32return(torch.float64iftorch.get_default_dtype()==torch.float64elsetorch.float32)def_get_capturable_supported_devices(supports_xla:bool=True)->List[str]:r"""Return the device type list that supports capturable optimizer."""capturable_supported_devices=["cuda","xpu","hpu"]ifnottorch.jit.is_scripting():capturable_supported_devices.append(torch._C._get_privateuse1_backend_name())ifsupports_xla:capturable_supported_devices.append("xla")returncapturable_supported_devices# Common doc strings among optimizers_params_doc=r"""params (iterable): iterable of parameters or named_parameters to optimize or iterable of dicts defining parameter groups. When using named_parameters, all parameters in all groups should be named"""_foreach_doc=r"""foreach (bool, optional): whether foreach implementation of optimizer is used. If unspecified by the user (so foreach is None), we will try to use foreach over the for-loop implementation on CUDA, since it is usually significantly more performant. Note that the foreach implementation uses ~ sizeof(params) more peak memory than the for-loop version due to the intermediates being a tensorlist vs just one tensor. If memory is prohibitive, batch fewer parameters through the optimizer at a time or switch this flag to False (default: None)"""_fused_doc=r"""fused (bool, optional): whether the fused implementation is used. Currently, `torch.float64`, `torch.float32`, `torch.float16`, and `torch.bfloat16` are supported. (default: None) .. note:: The foreach and fused implementations are typically faster than the for-loop, single-tensor implementation, with fused being theoretically fastest with both vertical and horizontal fusion. As such, if the user has not specified either flag (i.e., when foreach = fused = None), we will attempt defaulting to the foreach implementation when the tensors are all on CUDA. Why not fused? Since the fused implementation is relatively new, we want to give it sufficient bake-in time. To specify fused, pass True for fused. To force running the for-loop implementation, pass False for either foreach or fused. """_capturable_doc=r"""capturable (bool, optional): whether this instance is safe to capture in a CUDA graph. Passing True can impair ungraphed performance, so if you don't intend to graph capture this instance, leave it False (default: False)"""_differentiable_doc=r"""differentiable (bool, optional): whether autograd should occur through the optimizer step in training. Otherwise, the step() function runs in a torch.no_grad() context. Setting to True can impair performance, so leave it False if you don't intend to run autograd through this instance (default: False)"""_maximize_doc=r"""maximize (bool, optional): maximize the objective with respect to the params, instead of minimizing (default: False)"""defregister_optimizer_step_pre_hook(hook:GlobalOptimizerPreHook)->RemovableHandle:r"""Register a pre hook common to all optimizers. The hook should have the following signature:: hook(optimizer, args, kwargs) -> None or modified args and kwargs Args: hook (Callable): A user defined hook which is registered on all optimizers. Returns: :class:`torch.utils.hooks.RemovableHandle`: a handle that can be used to remove the added hook by calling ``handle.remove()`` """handle=hooks.RemovableHandle(_global_optimizer_pre_hooks)_global_optimizer_pre_hooks[handle.id]=hookreturnhandledefregister_optimizer_step_post_hook(hook:GlobalOptimizerPostHook)->RemovableHandle:r"""Register a post hook common to all optimizers. The hook should have the following signature:: hook(optimizer, args, kwargs) -> None Args: hook (Callable): A user defined hook which is registered on all optimizers. Returns: :class:`torch.utils.hooks.RemovableHandle`: a handle that can be used to remove the added hook by calling ``handle.remove()`` """handle=hooks.RemovableHandle(_global_optimizer_post_hooks)_global_optimizer_post_hooks[handle.id]=hookreturnhandleParamsT:TypeAlias=Union[Iterable[torch.Tensor],Iterable[Dict[str,Any]],Iterable[Tuple[str,torch.Tensor]]]_P=ParamSpec("_P")R=TypeVar("R")T=TypeVar("T")
[docs]classOptimizer:r"""Base class for all optimizers. .. warning:: Parameters need to be specified as collections that have a deterministic ordering that is consistent between runs. Examples of objects that don't satisfy those properties are sets and iterators over values of dictionaries. Args: params (iterable): an iterable of :class:`torch.Tensor` s or :class:`dict` s. Specifies what Tensors should be optimized. defaults: (dict): a dict containing default values of optimization options (used when a parameter group doesn't specify them). """OptimizerPreHook:TypeAlias=Callable[[Self,Args,Kwargs],Optional[Tuple[Args,Kwargs]]]# type: ignore[misc]OptimizerPostHook:TypeAlias=Callable[[Self,Args,Kwargs],None]# type: ignore[misc]_optimizer_step_pre_hooks:Dict[int,OptimizerPreHook]_optimizer_step_post_hooks:Dict[int,OptimizerPostHook]_optimizer_state_dict_pre_hooks:'OrderedDict[int, Callable[["Optimizer"], None]]'_optimizer_state_dict_post_hooks:'OrderedDict[int, Callable[["Optimizer", StateDict], Optional[StateDict]]]'_optimizer_load_state_dict_pre_hooks:'OrderedDict[int, Callable[["Optimizer", StateDict], Optional[StateDict]]]'_optimizer_load_state_dict_post_hooks:'OrderedDict[int, Callable[["Optimizer"], None]]'def__init__(self,params:ParamsT,defaults:Dict[str,Any])->None:# noqa: D107torch._C._log_api_usage_once("python.optimizer")self.defaults=defaultsself._optimizer_step_pre_hooks=OrderedDict()self._optimizer_step_post_hooks=OrderedDict()self._optimizer_state_dict_pre_hooks=OrderedDict()self._optimizer_state_dict_post_hooks=OrderedDict()self._optimizer_load_state_dict_pre_hooks=OrderedDict()self._optimizer_load_state_dict_post_hooks=OrderedDict()self._patch_step_function()ifisinstance(params,torch.Tensor):raiseTypeError("params argument given to the optimizer should be ""an iterable of Tensors or dicts, but got "+torch.typename(params))self.state:DefaultDict[torch.Tensor,Any]=defaultdict(dict)self.param_groups:List[Dict[str,Any]]=[]param_groups=list(params)iflen(param_groups)==0:raiseValueError("optimizer got an empty parameter list")ifnotisinstance(param_groups[0],dict):param_groups=[{"params":param_groups}]forparam_groupinparam_groups:self.add_param_group(cast(dict,param_group))# Allows _cuda_graph_capture_health_check to rig a poor man's TORCH_WARN_ONCE in python,# which I don't think exists# https://github.com/pytorch/pytorch/issues/72948self._warned_capturable_if_run_uncaptured=Truedef__getstate__(self)->Dict[str,Any]:# noqa: D105return{"defaults":self.defaults,"state":self.state,"param_groups":self.param_groups,}def__setstate__(self,state:Dict[str,Any])->None:# noqa: D105self.__dict__.update(state)if"_optimizer_step_pre_hooks"notinself.__dict__:self._optimizer_step_pre_hooks=OrderedDict()if"_optimizer_step_post_hooks"notinself.__dict__:self._optimizer_step_post_hooks=OrderedDict()if"_optimizer_state_dict_pre_hooks"notinself.__dict__:self._optimizer_state_dict_pre_hooks=OrderedDict()if"_optimizer_state_dict_post_hooks"notinself.__dict__:self._optimizer_state_dict_post_hooks=OrderedDict()if"_optimizer_load_state_dict_pre_hooks"notinself.__dict__:self._optimizer_load_state_dict_pre_hooks=OrderedDict()if"_optimizer_load_state_dict_post_hooks"notinself.__dict__:self._optimizer_load_state_dict_post_hooks=OrderedDict()self._patch_step_function()# To support multiprocessing pickle/unpickleself.defaults.setdefault("differentiable",False)def__repr__(self)->str:# noqa: D105format_string=self.__class__.__name__+" ("fori,groupinenumerate(self.param_groups):format_string+="\n"format_string+=f"Parameter Group {i}\n"forkeyinsorted(group.keys()):ifkey!="params":format_string+=f" {key}: {group[key]}\n"format_string+=")"returnformat_string# Currently needed by Adam and AdamWdef_cuda_graph_capture_health_check(self)->None:# Note [torch.compile x capturable]# If we are compiling, we try to take the capturable path automatically by# setting the flag to True during tracing. Due to this, we skip all the checks# normally required for determining whether we can use CUDA graphs and# shunt the responsibility to torch.inductor. This saves time during tracing# since the checks are slow without sacrificing UX since inductor will warn# later if CUDA graphs cannot be enabled, e.g.,# https://github.com/pytorch/pytorch/blob/d3ba8901d8640eb16f88b2bfef9df7fa383d4b47/torch/_inductor/compile_fx.py#L390.# Thus, when compiling, inductor will determine if cudagraphs# can be enabled based on whether there is input mutation or CPU tensors.if(nottorch.compiler.is_compiling()andtorch.backends.cuda.is_built()andtorch.cuda.is_available()):capturing=torch.cuda.is_current_stream_capturing()ifcapturingandnotall(group["capturable"]forgroupinself.param_groups):raiseRuntimeError("Attempting CUDA graph capture of step() for an instance of "+self.__class__.__name__+" but param_groups' capturable is False.")if((notgetattr(self,"_warned_capturable_if_run_uncaptured",False))andall(group["capturable"]forgroupinself.param_groups)and(notcapturing)):warnings.warn("This instance was constructed with capturable=True or some of all the param_groups came with capturable=True, ""but step() is running without CUDA graph capture. If you never intend to graph-capture this ""instance, capturable=True can impair performance, and you should set capturable=False.")self._warned_capturable_if_run_uncaptured=Truedef_optimizer_step_code(self)->None:"""Entry point for `torch.profile.profiler`. When python tracing is enabled the profiler will hook into this function at the CPython level to inspect the optimizer's parameters and param groups. It is called it after `step()` since many optimizers lazily initialize state. This is a workaround due to lack of a proper step hook on the optimizer, and will be removed if it exists. """@staticmethoddefprofile_hook_step(func:Callable[_P,R])->Callable[_P,R]:# noqa: D102@functools.wraps(func)defwrapper(*args:_P.args,**kwargs:_P.kwargs)->R:self,*_=argsself=cast(Optimizer,self)profile_name=f"Optimizer.step#{self.__class__.__name__}.step"withtorch.autograd.profiler.record_function(profile_name):# call optimizer step pre hooksforpre_hookinchain(_global_optimizer_pre_hooks.values(),self._optimizer_step_pre_hooks.values(),):result=pre_hook(self,args,kwargs)ifresultisnotNone:ifisinstance(result,tuple)andlen(result)==2:args,kwargs=result# type: ignore[assignment]else:raiseRuntimeError(f"{func} must return None or a tuple of (new_args, new_kwargs), but got {result}.")out=func(*args,**kwargs)self._optimizer_step_code()# call optimizer step post hooksforpost_hookinchain(self._optimizer_step_post_hooks.values(),_global_optimizer_post_hooks.values(),):post_hook(self,args,kwargs)returnoutreturnwrapper@staticmethoddef_group_tensors_by_device_and_dtype(tensorlistlist:TensorListList,with_indices:bool=False,)->Union[Dict[Tuple[None,None],Tuple[TensorListList,Indices]],Dict[Tuple[torch.device,torch.dtype],Tuple[TensorListList,Indices]],]:"""Group a list of lists of tensors by device and dtype. Skips this step if we are compiling since this will occur during inductor lowering. """iftorch.compiler.is_compiling():return{(None,None):(tensorlistlist,list(range(len(tensorlistlist[0]))))}else:return_group_tensors_by_device_and_dtype(tensorlistlist,with_indices)# type: ignore[return-value, arg-type]def_patch_step_function(self)->None:self._zero_grad_profile_name=(f"Optimizer.zero_grad#{self.__class__.__name__}.zero_grad")hooked=getattr(self.__class__.step,"hooked",None)ifnothooked:self.__class__.step=self.profile_hook_step(self.__class__.step)# type: ignore[assignment]self.__class__.step.hooked=True# type: ignore[attr-defined]
[docs]defregister_step_pre_hook(self,hook:OptimizerPreHook)->RemovableHandle:r"""Register an optimizer step pre hook which will be called before optimizer step. It should have the following signature:: hook(optimizer, args, kwargs) -> None or modified args and kwargs The ``optimizer`` argument is the optimizer instance being used. If args and kwargs are modified by the pre-hook, then the transformed values are returned as a tuple containing the new_args and new_kwargs. Args: hook (Callable): The user defined hook to be registered. Returns: :class:`torch.utils.hooks.RemovableHandle`: a handle that can be used to remove the added hook by calling ``handle.remove()`` """handle=hooks.RemovableHandle(self._optimizer_step_pre_hooks)self._optimizer_step_pre_hooks[handle.id]=hookreturnhandle
[docs]defregister_step_post_hook(self,hook:OptimizerPostHook)->RemovableHandle:r"""Register an optimizer step post hook which will be called after optimizer step. It should have the following signature:: hook(optimizer, args, kwargs) -> None The ``optimizer`` argument is the optimizer instance being used. Args: hook (Callable): The user defined hook to be registered. Returns: :class:`torch.utils.hooks.RemovableHandle`: a handle that can be used to remove the added hook by calling ``handle.remove()`` """handle=hooks.RemovableHandle(self._optimizer_step_post_hooks)self._optimizer_step_post_hooks[handle.id]=hookreturnhandle
[docs]defregister_state_dict_pre_hook(self,hook:Callable[["Optimizer"],None],prepend:bool=False)->RemovableHandle:# noqa: D101r"""Register a state dict pre-hook which will be called before :meth:`~torch.optim.Optimizer.state_dict` is called. It should have the following signature:: hook(optimizer) -> None The ``optimizer`` argument is the optimizer instance being used. The hook will be called with argument ``self`` before calling ``state_dict`` on ``self``. The registered hook can be used to perform pre-processing before the ``state_dict`` call is made. Args: hook (Callable): The user defined hook to be registered. prepend (bool): If True, the provided pre ``hook`` will be fired before all the already registered pre-hooks on ``state_dict``. Otherwise, the provided ``hook`` will be fired after all the already registered pre-hooks. (default: False) Returns: :class:`torch.utils.hooks.RemoveableHandle`: a handle that can be used to remove the added hook by calling ``handle.remove()`` """handle=hooks.RemovableHandle(self._optimizer_state_dict_pre_hooks)self._optimizer_state_dict_pre_hooks[handle.id]=hookifprepend:self._optimizer_state_dict_pre_hooks.move_to_end(handle.id,last=False)returnhandle
[docs]defregister_state_dict_post_hook(self,hook:Callable[["Optimizer",StateDict],Optional[StateDict]],prepend:bool=False,)->RemovableHandle:r"""Register a state dict post-hook which will be called after :meth:`~torch.optim.Optimizer.state_dict` is called. It should have the following signature:: hook(optimizer, state_dict) -> state_dict or None The hook will be called with arguments ``self`` and ``state_dict`` after generating a ``state_dict`` on ``self``. The hook may modify the state_dict inplace or optionally return a new one. The registered hook can be used to perform post-processing on the ``state_dict`` before it is returned. Args: hook (Callable): The user defined hook to be registered. prepend (bool): If True, the provided post ``hook`` will be fired before all the already registered post-hooks on ``state_dict``. Otherwise, the provided ``hook`` will be fired after all the already registered post-hooks. (default: False) Returns: :class:`torch.utils.hooks.RemoveableHandle`: a handle that can be used to remove the added hook by calling ``handle.remove()`` """handle=hooks.RemovableHandle(self._optimizer_state_dict_post_hooks)self._optimizer_state_dict_post_hooks[handle.id]=hookifprepend:self._optimizer_state_dict_post_hooks.move_to_end(handle.id,last=False)returnhandle
[docs]@torch._disable_dynamodefstate_dict(self)->StateDict:r"""Return the state of the optimizer as a :class:`dict`. It contains two entries: * ``state``: a Dict holding current optimization state. Its content differs between optimizer classes, but some common characteristics hold. For example, state is saved per parameter, and the parameter itself is NOT saved. ``state`` is a Dictionary mapping parameter ids to a Dict with state corresponding to each parameter. * ``param_groups``: a List containing all parameter groups where each parameter group is a Dict. Each parameter group contains metadata specific to the optimizer, such as learning rate and weight decay, as well as a List of parameter IDs of the parameters in the group. If a param group was initialized with ``named_parameters()`` the names content will also be saved in the state dict. NOTE: The parameter IDs may look like indices but they are just IDs associating state with param_group. When loading from a state_dict, the optimizer will zip the param_group ``params`` (int IDs) and the optimizer ``param_groups`` (actual ``nn.Parameter`` s) in order to match state WITHOUT additional verification. A returned state dict might look something like: .. code-block:: text { 'state': { 0: {'momentum_buffer': tensor(...), ...}, 1: {'momentum_buffer': tensor(...), ...}, 2: {'momentum_buffer': tensor(...), ...}, 3: {'momentum_buffer': tensor(...), ...} }, 'param_groups': [ { 'lr': 0.01, 'weight_decay': 0, ... 'params': [0] 'param_names' ['param0'] (optional) }, { 'lr': 0.001, 'weight_decay': 0.5, ... 'params': [1, 2, 3] 'param_names': ['param1', 'layer.weight', 'layer.bias'] (optional) } ] } """forpre_hookinself._optimizer_state_dict_pre_hooks.values():pre_hook(self)# Save order indices instead of Tensorsparam_mappings:Dict[int,int]={}start_index=0defpack_group(group:Dict[str,Any])->Dict[str,Any]:nonlocalstart_indexpacked={k:vfork,vingroup.items()ifk!="params"}param_mappings.update({id(p):ifori,pinenumerate(group["params"],start_index)ifid(p)notinparam_mappings})packed["params"]=[param_mappings[id(p)]forpingroup["params"]]start_index+=len(packed["params"])returnpackedparam_groups=[pack_group(g)forginself.param_groups]# Remap state to use order indices as keyspacked_state={(param_mappings[id(k)]ifisinstance(k,torch.Tensor)elsek):vfork,vinself.state.items()}state_dict={"state":packed_state,"param_groups":param_groups,}forpost_hookinself._optimizer_state_dict_post_hooks.values():hook_result=post_hook(self,state_dict)ifhook_resultisnotNone:state_dict=hook_resultreturnstate_dict
@staticmethoddef_process_value_according_to_param_policy(param:torch.Tensor,value:torch.Tensor,param_id:int,param_groups:List[Dict[Any,Any]],key:Hashable=None,)->torch.Tensor:# Floating-point types are a bit special here. They are the only ones# that are assumed to always match the type of params.# Make sure state['step'] is not casted https://github.com/pytorch/pytorch/issues/74424# UNLESS fused or capturable, see note [special device hosting for step]fused=Falsecapturable=Falseassertparam_groupsisnotNoneforpginparam_groups:ifparam_idinpg["params"]:fused=pg["fused"]if"fused"inpgelseFalsecapturable=pg["capturable"]if"capturable"inpgelseFalsebreakifkey=="step":ifcapturableorfused:returnvalue.to(dtype=torch.float32,device=param.device)else:returnvalueelse:ifparam.is_floating_point():returnvalue.to(dtype=param.dtype,device=param.device)else:returnvalue.to(device=param.device)
[docs]defregister_load_state_dict_pre_hook(self,hook:Callable[["Optimizer",StateDict],Optional[StateDict]],prepend:bool=False,)->RemovableHandle:# noqa: D205 D400r"""Register a load_state_dict pre-hook which will be called before :meth:`~torch.optim.Optimizer.load_state_dict` is called. It should have the following signature:: hook(optimizer, state_dict) -> state_dict or None The ``optimizer`` argument is the optimizer instance being used and the ``state_dict`` argument is a shallow copy of the ``state_dict`` the user passed in to ``load_state_dict``. The hook may modify the state_dict inplace or optionally return a new one. If a state_dict is returned, it will be used to be loaded into the optimizer. The hook will be called with argument ``self`` and ``state_dict`` before calling ``load_state_dict`` on ``self``. The registered hook can be used to perform pre-processing before the ``load_state_dict`` call is made. Args: hook (Callable): The user defined hook to be registered. prepend (bool): If True, the provided pre ``hook`` will be fired before all the already registered pre-hooks on ``load_state_dict``. Otherwise, the provided ``hook`` will be fired after all the already registered pre-hooks. (default: False) Returns: :class:`torch.utils.hooks.RemoveableHandle`: a handle that can be used to remove the added hook by calling ``handle.remove()`` """handle=hooks.RemovableHandle(self._optimizer_load_state_dict_pre_hooks)self._optimizer_load_state_dict_pre_hooks[handle.id]=hookifprepend:self._optimizer_load_state_dict_pre_hooks.move_to_end(handle.id,last=False)returnhandle
[docs]defregister_load_state_dict_post_hook(self,hook:Callable[["Optimizer"],None],prepend:bool=False)->RemovableHandle:# noqa: D205 D400r"""Register a load_state_dict post-hook which will be called after :meth:`~torch.optim.Optimizer.load_state_dict` is called. It should have the following signature:: hook(optimizer) -> None The ``optimizer`` argument is the optimizer instance being used. The hook will be called with argument ``self`` after calling ``load_state_dict`` on ``self``. The registered hook can be used to perform post-processing after ``load_state_dict`` has loaded the ``state_dict``. Args: hook (Callable): The user defined hook to be registered. prepend (bool): If True, the provided post ``hook`` will be fired before all the already registered post-hooks on ``load_state_dict``. Otherwise, the provided ``hook`` will be fired after all the already registered post-hooks. (default: False) Returns: :class:`torch.utils.hooks.RemoveableHandle`: a handle that can be used to remove the added hook by calling ``handle.remove()`` """handle=hooks.RemovableHandle(self._optimizer_load_state_dict_post_hooks)self._optimizer_load_state_dict_post_hooks[handle.id]=hookifprepend:self._optimizer_load_state_dict_post_hooks.move_to_end(handle.id,last=False)# type: ignore[attr-defined]returnhandle
[docs]@torch._disable_dynamodefload_state_dict(self,state_dict:StateDict)->None:r"""Load the optimizer state. Args: state_dict (dict): optimizer state. Should be an object returned from a call to :meth:`state_dict`. .. note:: The names of the parameters (if they exist under the "param_names" key of each param group in :meth:`state_dict`) will not affect the loading process. To use the parameters' names for custom cases (such as when the parameters in the loaded state dict differ from those initialized in the optimizer), a custom ``register_load_state_dict_pre_hook`` should be implemented to adapt the loaded dict accordingly. If ``param_names`` exist in loaded state dict ``param_groups`` they will be saved and override the current names, if present, in the optimizer state. If they do not exist in loaded state dict, the optimizer ``param_names`` will remain unchanged. """# shallow copy, to be consistent with module APIstate_dict=state_dict.copy()forpre_hookinself._optimizer_load_state_dict_pre_hooks.values():hook_result=pre_hook(self,state_dict)ifhook_resultisnotNone:state_dict=hook_result# Validate the state_dictgroups=self.param_groups# Deepcopy as we write into saved_groups later to update statesaved_groups=deepcopy(state_dict["param_groups"])iflen(groups)!=len(saved_groups):raiseValueError("loaded state dict has a different number of ""parameter groups")param_lens=(len(g["params"])forgingroups)saved_lens=(len(g["params"])forginsaved_groups)ifany(p_len!=s_lenforp_len,s_leninzip(param_lens,saved_lens)):raiseValueError("loaded state dict contains a parameter group ""that doesn't match the size of optimizer's group")# Update the stateid_map=dict(zip(chain.from_iterable(g["params"]forginsaved_groups),chain.from_iterable(g["params"]forgingroups),))def_cast(param,value,param_id=None,param_groups=None,key=None):r"""Make a deep copy of value, casting all tensors to device of param."""ifisinstance(value,torch.Tensor):returnOptimizer._process_value_according_to_param_policy(param,value,param_id,param_groups,key)elifisinstance(value,dict):return{k:_cast(param,v,param_id=param_id,param_groups=param_groups,key=k)fork,vinvalue.items()}elifisinstance(value,Iterable):returntype(value)(_cast(param,v,param_id=param_id,param_groups=param_groups)forvinvalue)# type: ignore[call-arg]else:returnvalue# Copy state assigned to params (and cast tensors to appropriate types).# State that is not assigned to params is copied as is (needed for# backward compatibility).state:DefaultDict[torch.Tensor,Dict[Any,Any]]=defaultdict(dict)fork,vinstate_dict["state"].items():ifkinid_map:param=id_map[k]state[param]=_cast(param,v,param_id=k,param_groups=state_dict["param_groups"])else:state[k]=v# Update parameter groups, setting their 'params' valuedefupdate_group(group:Dict[str,Any],new_group:Dict[str,Any])->Dict[str,Any]:new_group["params"]=group["params"]if"param_names"ingroupand"param_names"notinnew_group:new_group["param_names"]=group["param_names"]returnnew_groupparam_groups=[update_group(g,ng)forg,nginzip(groups,saved_groups)]self.__setstate__({"state":state,"param_groups":param_groups})forpost_hookinself._optimizer_load_state_dict_post_hooks.values():post_hook(self)
[docs]@torch._disable_dynamodefzero_grad(self,set_to_none:bool=True)->None:r"""Reset the gradients of all optimized :class:`torch.Tensor` s. Args: set_to_none (bool): instead of setting to zero, set the grads to None. This will in general have lower memory footprint, and can modestly improve performance. However, it changes certain behaviors. For example: 1. When the user tries to access a gradient and perform manual ops on it, a None attribute or a Tensor full of 0s will behave differently. 2. If the user requests ``zero_grad(set_to_none=True)`` followed by a backward pass, ``.grad``\ s are guaranteed to be None for params that did not receive a gradient. 3. ``torch.optim`` optimizers have a different behavior if the gradient is 0 or None (in one case it does the step with a gradient of 0 and in the other it skips the step altogether). """foreach=self.defaults.get("foreach",False)orself.defaults.get("fused",False)ifnothasattr(self,"_zero_grad_profile_name"):self._patch_step_function()per_device_and_dtype_grads:Optional[DefaultDict[torch.device,DefaultDict[torch.dtype,List[torch.Tensor]]]]ifforeach:per_device_and_dtype_grads=defaultdict(lambda:defaultdict(list))else:per_device_and_dtype_grads=Nonewithtorch.autograd.profiler.record_function(self._zero_grad_profile_name):forgroupinself.param_groups:forpingroup["params"]:ifp.gradisnotNone:ifset_to_none:p.grad=Noneelse:ifp.grad.grad_fnisnotNone:p.grad.detach_()else:p.grad.requires_grad_(False)ifnotforeachorp.grad.is_sparse:p.grad.zero_()else:assertper_device_and_dtype_gradsisnotNoneper_device_and_dtype_grads[p.grad.device][p.grad.dtype].append(p.grad)ifforeach:assertper_device_and_dtype_gradsisnotNoneforper_dtype_gradsinper_device_and_dtype_grads.values():forgradsinper_dtype_grads.values():torch._foreach_zero_(grads)
[docs]defstep(self,closure:Optional[Callable[[],float]]=None)->Optional[float]:r"""Perform a single optimization step to update parameter. Args: closure (Callable): A closure that reevaluates the model and returns the loss. Optional for most optimizers. """raiseNotImplementedError
[docs]@torch._disable_dynamodefadd_param_group(self,param_group:Dict[str,Any])->None:r"""Add a param group to the :class:`Optimizer` s `param_groups`. This can be useful when fine tuning a pre-trained network as frozen layers can be made trainable and added to the :class:`Optimizer` as training progresses. Args: param_group (dict): Specifies what Tensors should be optimized along with group specific optimization options. """ifnotisinstance(param_group,dict):raiseTypeError(f"param_group must be a dict, but got {type(param_group)}")params=param_group["params"]ifisinstance(params,torch.Tensor):param_group["params"]=[params]elifisinstance(params,set):raiseTypeError("optimizer parameters need to be organized in ordered collections, but ""the ordering of tensors in sets will change between runs. Please use a list instead.")else:param_group["params"]=list(params)extracted_param_tensors=[]extracted_param_names=[]forparaminparam_group["params"]:ifisinstance(param,tuple):param_name=param[0]extracted_param_names.append(param_name)extracted_param_tensors.append(param[1])else:extracted_param_tensors.append(param)param_group["params"]=extracted_param_tensorsiflen(extracted_param_names)!=0:iflen(extracted_param_names)==len(extracted_param_tensors):param_group["param_names"]=extracted_param_nameselse:raiseValueError("all optimizer params should be with/without names. Some param names are missing")forparaminparam_group["params"]:ifnotisinstance(param,torch.Tensor):raiseTypeError("optimizer can only optimize Tensors, ""but one of the params is "+torch.typename(param))ifnotself.defaults.get("differentiable",None)andnot(param.is_leaforparam.retains_grad):raiseValueError("can't optimize a non-leaf Tensor")forname,defaultinself.defaults.items():ifdefaultisrequiredandnamenotinparam_group:raiseValueError(f"parameter group didn't specify a value of required optimization parameter {name}")else:param_group.setdefault(name,default)params=param_group["params"]iflen(params)!=len(set(params)):warnings.warn("optimizer contains a parameter group with duplicate parameters; ""in future, this will cause an error; ""see github.com/pytorch/pytorch/issues/40967 for more information",stacklevel=3,)param_set:Set[torch.Tensor]=set()forgroupinself.param_groups:param_set.update(set(group["params"]))if("param_names"inparam_group)!=("param_names"ingroup):current_group_txt=("with names"if"param_names"inparam_groupelse"without names")raiseValueError("all optimizer param groups should be with/without names. "f"cannot add param group {current_group_txt} to the optimizer")ifnotparam_set.isdisjoint(set(param_group["params"])):raiseValueError("some parameters appear in more than one parameter group")self.param_groups.append(param_group)
Docs
Access comprehensive developer documentation for PyTorch
To analyze traffic and optimize your experience, we serve cookies on this site. By clicking or navigating, you agree to allow our usage of cookies. As the current maintainers of this site, Facebook’s Cookies Policy applies. Learn more, including about available controls: Cookies Policy.