Shortcuts

Source code for torch.export.graph_signature

# mypy: allow-untyped-defs
import dataclasses
from enum import auto, Enum
from typing import Collection, Dict, List, Mapping, Optional, Set, TYPE_CHECKING, Union

from torch._library.fake_class_registry import FakeScriptObject


if TYPE_CHECKING:
    import torch
    from torch._functorch._aot_autograd.schemas import GraphSignature

__all__ = [
    "ConstantArgument",
    "CustomObjArgument",
    "ExportBackwardSignature",
    "ExportGraphSignature",
    "InputKind",
    "InputSpec",
    "OutputKind",
    "OutputSpec",
    "SymIntArgument",
    "SymFloatArgument",
    "SymBoolArgument",
    "TensorArgument",
]


@dataclasses.dataclass
class TensorArgument:
    name: str


@dataclasses.dataclass
class TokenArgument:
    name: str


[docs]@dataclasses.dataclass class SymIntArgument: name: str
[docs]@dataclasses.dataclass class SymFloatArgument: name: str
[docs]@dataclasses.dataclass class SymBoolArgument: name: str
[docs]@dataclasses.dataclass class CustomObjArgument: name: str class_fqn: str fake_val: Optional[FakeScriptObject] = None
@dataclasses.dataclass class ConstantArgument: name: str value: Union[int, float, bool, str, None] ArgumentSpec = Union[ TensorArgument, SymIntArgument, SymFloatArgument, SymBoolArgument, ConstantArgument, CustomObjArgument, TokenArgument, ]
[docs]class InputKind(Enum): USER_INPUT = auto() PARAMETER = auto() BUFFER = auto() CONSTANT_TENSOR = auto() CUSTOM_OBJ = auto() TOKEN = auto()
[docs]@dataclasses.dataclass class InputSpec: kind: InputKind arg: ArgumentSpec target: Optional[str] persistent: Optional[bool] = None def __post_init__(self): if self.kind == InputKind.BUFFER: assert ( self.persistent is not None ), "Failed to specify persistent flag on BUFFER." assert isinstance( self.arg, ( TensorArgument, SymIntArgument, SymFloatArgument, SymBoolArgument, ConstantArgument, CustomObjArgument, TokenArgument, ), ), f"got {type(self.arg)}"
[docs]class OutputKind(Enum): USER_OUTPUT = auto() LOSS_OUTPUT = auto() BUFFER_MUTATION = auto() GRADIENT_TO_PARAMETER = auto() GRADIENT_TO_USER_INPUT = auto() USER_INPUT_MUTATION = auto() TOKEN = auto()
[docs]@dataclasses.dataclass class OutputSpec: kind: OutputKind arg: ArgumentSpec target: Optional[str] def __post_init__(self): assert isinstance( self.arg, ( TensorArgument, SymIntArgument, SymFloatArgument, SymBoolArgument, ConstantArgument, TokenArgument, CustomObjArgument, ), ), self.arg
[docs]@dataclasses.dataclass class ExportBackwardSignature: gradients_to_parameters: Dict[str, str] gradients_to_user_inputs: Dict[str, str] loss_output: str
[docs]@dataclasses.dataclass class ExportGraphSignature: """ :class:`ExportGraphSignature` models the input/output signature of Export Graph, which is a fx.Graph with stronger invariants gurantees. Export Graph is functional and does not access "states" like parameters or buffers within the graph via ``getattr`` nodes. Instead, :func:`export` gurantees that parameters, buffers, and constant tensors are lifted out of the graph as inputs. Similarly, any mutations to buffers are not included in the graph either, instead the updated values of mutated buffers are modeled as additional outputs of Export Graph. The ordering of all inputs and outputs are:: Inputs = [*parameters_buffers_constant_tensors, *flattened_user_inputs] Outputs = [*mutated_inputs, *flattened_user_outputs] e.g. If following module is exported:: class CustomModule(nn.Module): def __init__(self) -> None: super(CustomModule, self).__init__() # Define a parameter self.my_parameter = nn.Parameter(torch.tensor(2.0)) # Define two buffers self.register_buffer('my_buffer1', torch.tensor(3.0)) self.register_buffer('my_buffer2', torch.tensor(4.0)) def forward(self, x1, x2): # Use the parameter, buffers, and both inputs in the forward method output = (x1 + self.my_parameter) * self.my_buffer1 + x2 * self.my_buffer2 # Mutate one of the buffers (e.g., increment it by 1) self.my_buffer2.add_(1.0) # In-place addition return output Resulting Graph would be:: graph(): %arg0_1 := placeholder[target=arg0_1] %arg1_1 := placeholder[target=arg1_1] %arg2_1 := placeholder[target=arg2_1] %arg3_1 := placeholder[target=arg3_1] %arg4_1 := placeholder[target=arg4_1] %add_tensor := call_function[target=torch.ops.aten.add.Tensor](args = (%arg3_1, %arg0_1), kwargs = {}) %mul_tensor := call_function[target=torch.ops.aten.mul.Tensor](args = (%add_tensor, %arg1_1), kwargs = {}) %mul_tensor_1 := call_function[target=torch.ops.aten.mul.Tensor](args = (%arg4_1, %arg2_1), kwargs = {}) %add_tensor_1 := call_function[target=torch.ops.aten.add.Tensor](args = (%mul_tensor, %mul_tensor_1), kwargs = {}) %add_tensor_2 := call_function[target=torch.ops.aten.add.Tensor](args = (%arg2_1, 1.0), kwargs = {}) return (add_tensor_2, add_tensor_1) Resulting ExportGraphSignature would be:: ExportGraphSignature( input_specs=[ InputSpec(kind=<InputKind.PARAMETER: 2>, arg=TensorArgument(name='arg0_1'), target='my_parameter'), InputSpec(kind=<InputKind.BUFFER: 3>, arg=TensorArgument(name='arg1_1'), target='my_buffer1'), InputSpec(kind=<InputKind.BUFFER: 3>, arg=TensorArgument(name='arg2_1'), target='my_buffer2'), InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='arg3_1'), target=None), InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='arg4_1'), target=None) ], output_specs=[ OutputSpec(kind=<OutputKind.BUFFER_MUTATION: 3>, arg=TensorArgument(name='add_2'), target='my_buffer2'), OutputSpec(kind=<OutputKind.USER_OUTPUT: 1>, arg=TensorArgument(name='add_1'), target=None) ] ) """ input_specs: List[InputSpec] output_specs: List[OutputSpec] # A list of parameters uniquely identified by mangled fully qualified name @property def parameters(self) -> Collection[str]: return tuple( s.target for s in self.input_specs if s.kind == InputKind.PARAMETER if isinstance(s.target, str) ) # A list of buffers uniquely identified by mangled fully qualified name @property def buffers(self) -> Collection[str]: return tuple( s.target for s in self.input_specs if s.kind == InputKind.BUFFER if isinstance(s.target, str) ) @property def non_persistent_buffers(self) -> Collection[str]: return tuple( s.target for s in self.input_specs if s.kind == InputKind.BUFFER if s.persistent is False if isinstance(s.target, str) ) # A list of lifted constant tensors @property def lifted_tensor_constants(self) -> Collection[str]: return tuple( s.target for s in self.input_specs if s.kind == InputKind.CONSTANT_TENSOR if isinstance(s.target, str) ) @property def lifted_custom_objs(self) -> Collection[str]: return tuple( s.target for s in self.input_specs if s.kind == InputKind.CUSTOM_OBJ if isinstance(s.target, str) ) # Graph node names of pytree-flattened inputs of original program @property def user_inputs(self) -> Collection[Union[int, float, bool, None, str]]: user_inputs: List[Union[int, float, bool, None, str]] = [] for s in self.input_specs: if s.kind != InputKind.USER_INPUT: continue if isinstance( s.arg, ( TensorArgument, SymIntArgument, SymFloatArgument, SymBoolArgument, CustomObjArgument, ), ): user_inputs.append(s.arg.name) elif isinstance(s.arg, ConstantArgument): user_inputs.append(s.arg.value) else: raise RuntimeError(f"{s.arg} is not a valid user inputs") return tuple(user_inputs) # Graph node names of pytree-flattened outputs of original program # For joint-graph purposes, will include the loss output. @property def user_outputs(self) -> Collection[Union[int, float, bool, None, str]]: user_outputs: List[Union[int, float, bool, None, str]] = [] for s in self.output_specs: if s.kind not in [ OutputKind.USER_OUTPUT, OutputKind.LOSS_OUTPUT, ]: continue if isinstance( s.arg, (TensorArgument, SymIntArgument, SymFloatArgument, SymBoolArgument), ): user_outputs.append(s.arg.name) elif isinstance(s.arg, ConstantArgument): user_outputs.append(s.arg.value) elif isinstance(s.arg, CustomObjArgument): user_outputs.append(s.arg.name) else: raise RuntimeError(f"{s.arg} is not a valid user output") return tuple(user_outputs) # A dictionary mapping graph input node names to parameters. If a graph input # name is found in this dictionary, it is guranteed to be a lifted parameter. @property def inputs_to_parameters(self) -> Mapping[str, str]: return _immutable_dict( (s.arg.name, s.target) for s in self.input_specs if s.kind == InputKind.PARAMETER and isinstance(s.arg, TensorArgument) and isinstance(s.target, str) ) # A dictionary mapping graph input node names to buffers. If a graph input # name is found in this dictionary, it is guranteed to be a lifted buffer. @property def inputs_to_buffers(self) -> Mapping[str, str]: return _immutable_dict( (s.arg.name, s.target) # type: ignore[union-attr, misc] for s in self.input_specs if s.kind == InputKind.BUFFER and isinstance(s.arg, TensorArgument) and isinstance(s.target, str) ) # A dictionary mapping graph output node names to buffers that are mutated in the # original program. Buffers that are not mutated will not be found in this dictionary. @property def buffers_to_mutate(self) -> Mapping[str, str]: return _immutable_dict( (s.arg.name, s.target) for s in self.output_specs if s.kind == OutputKind.BUFFER_MUTATION and isinstance(s.arg, TensorArgument) and isinstance(s.target, str) ) @property def user_inputs_to_mutate(self) -> Mapping[str, str]: return _immutable_dict( (s.arg.name, s.target) for s in self.output_specs if s.kind == OutputKind.USER_INPUT_MUTATION and isinstance(s.arg, TensorArgument) and isinstance(s.target, str) ) # A dictionary mapping graph input node names to lifted tensor constants. @property def inputs_to_lifted_tensor_constants(self) -> Mapping[str, str]: return _immutable_dict( (s.arg.name, s.target) for s in self.input_specs if s.kind == InputKind.CONSTANT_TENSOR and isinstance(s.arg, TensorArgument) and isinstance(s.target, str) ) @property def inputs_to_lifted_custom_objs(self) -> Mapping[str, str]: return _immutable_dict( (s.arg.name, s.target) for s in self.input_specs if s.kind == InputKind.CUSTOM_OBJ and isinstance(s.arg, CustomObjArgument) and isinstance(s.target, str) ) @property def backward_signature(self) -> Optional[ExportBackwardSignature]: loss_output = None gradients_to_parameters: Dict[str, str] = {} gradients_to_user_inputs: Dict[str, str] = {} for spec in self.output_specs: if spec.kind == OutputKind.LOSS_OUTPUT: assert loss_output is None assert isinstance(spec.arg, TensorArgument) loss_output = spec.arg.name elif spec.kind == OutputKind.GRADIENT_TO_PARAMETER: assert isinstance(spec.target, str) assert isinstance(spec.arg, TensorArgument) gradients_to_parameters[spec.arg.name] = spec.target elif spec.kind == OutputKind.GRADIENT_TO_USER_INPUT: assert isinstance(spec.target, str) assert isinstance(spec.arg, TensorArgument) gradients_to_user_inputs[spec.arg.name] = spec.target if loss_output is None: return None return ExportBackwardSignature( loss_output=loss_output, gradients_to_parameters=gradients_to_parameters, gradients_to_user_inputs=gradients_to_user_inputs, ) # Map from assertion dependency token index to assertion dep token output # name in output. The shape of output after aot_autograd will be like: # (updated_inputs, user_outputs, dep_token). @property def assertion_dep_token(self) -> Optional[Mapping[int, str]]: return None @property def input_tokens(self) -> Collection[str]: input_tokens = [] for s in self.input_specs: if s.kind == InputKind.TOKEN: assert isinstance(s.arg, TokenArgument) input_tokens.append(s.arg.name) return tuple(input_tokens) @property def output_tokens(self) -> Collection[str]: output_tokens = [] for s in self.output_specs: if s.kind == OutputKind.TOKEN: assert isinstance(s.arg, TokenArgument) output_tokens.append(s.arg.name) return tuple(output_tokens) def __post_init__(self) -> None: assertion_dep_token = self.assertion_dep_token if assertion_dep_token is None: return assert len(assertion_dep_token) == 1 assertion_dep_token_index = next(iter(assertion_dep_token.keys())) assert ( len(self.user_outputs) + len(self.buffers_to_mutate) == assertion_dep_token_index )
[docs] def replace_all_uses(self, old: str, new: str): """ Replace all uses of the old name with new name in the signature. """ assert isinstance(old, str) assert isinstance(new, str) arg_types = ( TensorArgument, SymIntArgument, SymFloatArgument, SymBoolArgument, CustomObjArgument, TokenArgument, ) for o in self.output_specs: if isinstance(o.arg, arg_types): if o.arg.name == old: o.arg.name = new for i in self.input_specs: if isinstance(i.arg, arg_types): if i.arg.name == old: i.arg.name = new
[docs] def get_replace_hook(self, replace_inputs=False): def _(old, new, user): if user.op == "output": self.replace_all_uses(old.name, new) if replace_inputs and old.op == "placeholder": self.replace_all_uses(old.name, new) return _
def _immutable_dict(items): """ Creates a mapping where items cannot be added, deleted, or updated. NOTE: The immutability is shallow (like tuple is an immutable collection). """ from types import MappingProxyType return MappingProxyType(dict(items)) def _make_argument_spec(node, token_names) -> ArgumentSpec: from torch import ScriptObject, SymBool, SymFloat, SymInt from torch._library.fake_class_registry import FakeScriptObject from torch._subclasses.fake_tensor import FakeTensor if isinstance(node, (int, bool, float, type(None), str)): # For const outputs we just directly return this return ConstantArgument(name="", value=node) assert ( "val" in node.meta ), f"{node} is not a constant or a node with a 'val' metadata field" val = node.meta["val"] if node.name in token_names: return TokenArgument(name=node.name) elif isinstance(val, FakeTensor): return TensorArgument(name=node.name) elif isinstance(val, SymInt): return SymIntArgument(name=node.name) elif isinstance(val, SymFloat): return SymFloatArgument(name=node.name) elif isinstance(val, SymBool): return SymBoolArgument(name=node.name) elif isinstance(val, ScriptObject): return CustomObjArgument(name=node.name, class_fqn=val._type().qualified_name()) # type: ignore[attr-defined] elif isinstance(val, FakeScriptObject): return CustomObjArgument( name=node.name, class_fqn=val.script_class_name, fake_val=val ) elif isinstance(val, (int, bool, str, float, type(None))): return ConstantArgument(name=node.name, value=val) else: raise AssertionError( f"Encountered an unsupported object of type {type(val)} " f"while writing the metadata for exported program" ) def _convert_to_export_graph_signature( graph_signature: "GraphSignature", gm: "torch.fx.GraphModule", non_persistent_buffers: Set[str], ) -> "ExportGraphSignature": from torch.utils import _pytree as pytree is_joint = graph_signature.backward_signature is not None # unpack objects user_inputs = set(graph_signature.user_inputs) inputs_to_parameters = graph_signature.inputs_to_parameters inputs_to_buffers = graph_signature.inputs_to_buffers user_outputs = set(graph_signature.user_outputs) buffer_mutations = graph_signature.buffers_to_mutate user_input_mutations = graph_signature.user_inputs_to_mutate grad_params = graph_signature.backward_signature.gradients_to_parameter if is_joint else {} # type: ignore[union-attr] grad_user_inputs = graph_signature.backward_signature.gradients_to_user_inputs if is_joint else {} # type: ignore[union-attr] loss_output = graph_signature.backward_signature.loss_output if is_joint else None # type: ignore[union-attr] input_tokens = graph_signature.input_tokens output_tokens = graph_signature.output_tokens inputs = [ _make_argument_spec(node, input_tokens) for node in gm.graph.nodes if node.op == "placeholder" ] outputs = [ _make_argument_spec(node, output_tokens) for node in pytree.tree_leaves(next(iter(reversed(gm.graph.nodes))).args) ] def to_input_spec(inp: ArgumentSpec) -> InputSpec: if isinstance(inp, TokenArgument): return InputSpec(kind=InputKind.TOKEN, arg=inp, target=None) if not isinstance(inp, TensorArgument): return InputSpec(kind=InputKind.USER_INPUT, arg=inp, target=None) name = inp.name if name in user_inputs: return InputSpec(kind=InputKind.USER_INPUT, arg=inp, target=None) elif name in inputs_to_parameters: return InputSpec( kind=InputKind.PARAMETER, arg=inp, target=inputs_to_parameters[name], # type: ignore[index] ) elif name in inputs_to_buffers: return InputSpec( kind=InputKind.BUFFER, arg=inp, target=inputs_to_buffers[name], # type: ignore[index] persistent=(inputs_to_buffers[name] not in non_persistent_buffers), # type: ignore[index] ) else: raise AssertionError(f"Unknown tensor input kind: {name}") def to_output_spec(idx: int, o: ArgumentSpec) -> OutputSpec: if isinstance(o, TokenArgument): return OutputSpec(kind=OutputKind.TOKEN, arg=o, target=None) if not isinstance(o, TensorArgument): return OutputSpec(kind=OutputKind.USER_OUTPUT, arg=o, target=None) name = o.name if idx < len(buffer_mutations) + len(user_input_mutations) + len(output_tokens): if name in buffer_mutations: return OutputSpec( kind=OutputKind.BUFFER_MUTATION, arg=o, target=buffer_mutations[name], # type: ignore[index] ) elif name in user_input_mutations: return OutputSpec( kind=OutputKind.USER_INPUT_MUTATION, arg=o, target=user_input_mutations[name], # type: ignore[index] ) else: raise AssertionError(f"Unknown tensor mutation kind: {name}") else: if name in user_outputs: return OutputSpec(kind=OutputKind.USER_OUTPUT, arg=o, target=None) elif name in grad_params: return OutputSpec( kind=OutputKind.GRADIENT_TO_PARAMETER, arg=o, target=grad_params[name], ) elif name in grad_user_inputs: return OutputSpec( kind=OutputKind.GRADIENT_TO_USER_INPUT, arg=o, target=grad_user_inputs[name], ) elif name == loss_output: return OutputSpec(kind=OutputKind.LOSS_OUTPUT, arg=o, target=None) else: raise AssertionError(f"Unknown tensor output kind: {name}") input_specs = [to_input_spec(inp) for inp in inputs] output_specs = [to_output_spec(idx, o) for idx, o in enumerate(outputs)] return ExportGraphSignature(input_specs=input_specs, output_specs=output_specs)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources