# mypy: allow-untyped-defsr"""This package adds support for device memory management implemented in CUDA."""importcollectionsimportcontextlibimportctypesimportpickleimportsysimportwarningsfrominspectimportsignaturefromtypingimportAny,Dict,Literal,Optional,Tuple,Unionfromtyping_extensionsimportdeprecatedimporttorchfromtorchimport_Cfromtorch._utilsimport_dummy_typefromtorch.typesimportDevicefrom.import(_get_amdsmi_device_index,_get_device_index,_get_nvml_device_index,_lazy_init,is_initialized,)from._memory_vizimportmemoryas_memory,segmentsas_segments__all__=["caching_allocator_alloc","caching_allocator_delete","caching_allocator_enable","get_per_process_memory_fraction","set_per_process_memory_fraction","empty_cache","memory_stats","memory_stats_as_nested_dict","reset_accumulated_memory_stats","reset_peak_memory_stats","reset_max_memory_allocated","reset_max_memory_cached","memory_allocated","max_memory_allocated","memory_reserved","max_memory_reserved","memory_cached","max_memory_cached","memory_snapshot","memory_summary","list_gpu_processes","mem_get_info","get_allocator_backend","CUDAPluggableAllocator","change_current_allocator","MemPool","MemPoolContext","use_mem_pool",]ifnothasattr(torch._C,"_cuda_CUDAAllocator"):# Define dummy base classestorch._C.__dict__["_cuda_CUDAAllocator"]=_dummy_type("_cuda_CUDAAllocator")ifnothasattr(torch._C,"_MemPool"):# Define dummy base classestorch._C.__dict__["_MemPool"]=_dummy_type("_MemPool")torch._C.__dict__["_MemPoolContext"]=_dummy_type("_MemPoolContext")torch._C.__dict__["_cuda_beginAllocateToPool"]=_dummy_type("_cuda_beginAllocateToPool")torch._C.__dict__["_cuda_endAllocateCurrentStreamToPool"]=_dummy_type("_cuda_endAllocateCurrentStreamToPool")torch._C.__dict__["_cuda_releasePool"]=_dummy_type("_cuda_releasePool")fromtorch._Cimport(# noqa: F401_cuda_beginAllocateToPool,_cuda_CUDAAllocator,_cuda_endAllocateCurrentStreamToPool,_cuda_releasePool,_MemPool,_MemPoolContext,)def_host_allocator():_lazy_init()returntorch._C._cuda_cudaHostAllocator()@contextlib.contextmanagerdef_free_mutex():torch._C._cuda_lock_mutex()try:yieldfinally:torch._C._cuda_unlock_mutex()
[docs]defcaching_allocator_alloc(size,device:Union[Device,int]=None,stream=None):r"""Perform a memory allocation using the CUDA memory allocator. Memory is allocated for a given device and a stream, this function is intended to be used for interoperability with other frameworks. Allocated memory is released through :func:`~torch.cuda.caching_allocator_delete`. Args: size (int): number of bytes to be allocated. device (torch.device or int, optional): selected device. If it is ``None`` the default CUDA device is used. stream (torch.cuda.Stream or int, optional): selected stream. If is ``None`` then the default stream for the selected device is used. .. note:: See :ref:`cuda-memory-management` for more details about GPU memory management. """ifdeviceisNone:device=torch.cuda.current_device()device=_get_device_index(device)ifstreamisNone:stream=torch.cuda.current_stream(device)ifisinstance(stream,torch.cuda.streams.Stream):stream=stream.cuda_streamifnotisinstance(stream,int):raiseTypeError("Invalid type for stream argument, must be ""`torch.cuda.Stream` or `int` representing a pointer ""to a existing stream")withtorch.cuda.device(device):returntorch._C._cuda_cudaCachingAllocator_raw_alloc(size,stream)
[docs]defcaching_allocator_delete(mem_ptr):r"""Delete memory allocated using the CUDA memory allocator. Memory allocated with :func:`~torch.cuda.caching_allocator_alloc`. is freed here. The associated device and stream are tracked inside the allocator. Args: mem_ptr (int): memory address to be freed by the allocator. .. note:: See :ref:`cuda-memory-management` for more details about GPU memory management. """torch._C._cuda_cudaCachingAllocator_raw_delete(mem_ptr)
[docs]defcaching_allocator_enable(value:bool=True)->None:r"""Enable or disable the CUDA memory allocator. On by default."""ifis_initialized():torch._C._cuda_cudaCachingAllocator_enable(value)
[docs]defset_per_process_memory_fraction(fraction,device:Union[Device,int]=None)->None:r"""Set memory fraction for a process. The fraction is used to limit an caching allocator to allocated memory on a CUDA device. The allowed value equals the total visible memory multiplied fraction. If trying to allocate more than the allowed value in a process, will raise an out of memory error in allocator. Args: fraction(float): Range: 0~1. Allowed memory equals total_memory * fraction. device (torch.device or int, optional): selected device. If it is ``None`` the default CUDA device is used. .. note:: In general, the total available free memory is less than the total capacity. """_lazy_init()ifdeviceisNone:device=torch.cuda.current_device()device=_get_device_index(device)ifnotisinstance(fraction,float):raiseTypeError("Invalid type for fraction argument, must be `float`")iffraction<0orfraction>1:raiseValueError(f"Invalid fraction value: {fraction}. Allowed range: 0~1")torch._C._cuda_setMemoryFraction(fraction,device)
[docs]defget_per_process_memory_fraction(device:Union[Device,int]=None)->float:r"""Get memory fraction for a process. Args: device (torch.device or int, optional): selected device. If it is ``None`` the default CUDA device is used. Returns: memory fraction, in range 0~1. Allowed memory equals total_memory * fraction. """_lazy_init()ifdeviceisNone:device=torch.cuda.current_device()device=_get_device_index(device)returntorch._C._cuda_getMemoryFraction(device)
[docs]defempty_cache()->None:r"""Release all unoccupied cached memory currently held by the caching allocator so that those can be used in other GPU application and visible in `nvidia-smi`. .. note:: :func:`~torch.cuda.empty_cache` doesn't increase the amount of GPU memory available for PyTorch. However, it may help reduce fragmentation of GPU memory in certain cases. See :ref:`cuda-memory-management` for more details about GPU memory management. """ifis_initialized():torch._C._cuda_emptyCache()
[docs]defmemory_stats(device:Union[Device,int]=None)->Dict[str,Any]:r"""Return a dictionary of CUDA memory allocator statistics for a given device. The return value of this function is a dictionary of statistics, each of which is a non-negative integer. Core statistics: - ``"allocated.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``: number of allocation requests received by the memory allocator. - ``"allocated_bytes.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``: amount of allocated memory. - ``"segment.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``: number of reserved segments from ``cudaMalloc()``. - ``"reserved_bytes.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``: amount of reserved memory. - ``"active.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``: number of active memory blocks. - ``"active_bytes.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``: amount of active memory. - ``"inactive_split.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``: number of inactive, non-releasable memory blocks. - ``"inactive_split_bytes.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``: amount of inactive, non-releasable memory. For these core statistics, values are broken down as follows. Pool type: - ``all``: combined statistics across all memory pools. - ``large_pool``: statistics for the large allocation pool (as of October 2019, for size >= 1MB allocations). - ``small_pool``: statistics for the small allocation pool (as of October 2019, for size < 1MB allocations). Metric type: - ``current``: current value of this metric. - ``peak``: maximum value of this metric. - ``allocated``: historical total increase in this metric. - ``freed``: historical total decrease in this metric. In addition to the core statistics, we also provide some simple event counters: - ``"num_alloc_retries"``: number of failed ``cudaMalloc`` calls that result in a cache flush and retry. - ``"num_ooms"``: number of out-of-memory errors thrown. - ``"num_sync_all_streams"``: number of ``synchronize_and_free_events`` calls. - ``"num_device_alloc"``: number of CUDA allocation calls. This includes both cuMemMap and cudaMalloc. - ``"num_device_free"``: number of CUDA free calls. This includes both cuMemUnmap and cudaFree. The caching allocator can be configured via ENV to not split blocks larger than a defined size (see Memory Management section of the Cuda Semantics documentation). This helps avoid memory fragmentation but may have a performance penalty. Additional outputs to assist with tuning and evaluating impact: - ``"max_split_size"``: blocks above this size will not be split. - ``"oversize_allocations.{current,peak,allocated,freed}"``: number of over-size allocation requests received by the memory allocator. - ``"oversize_segments.{current,peak,allocated,freed}"``: number of over-size reserved segments from ``cudaMalloc()``. The caching allocator can be configured via ENV to round memory allocations in order to reduce fragmentation. Sometimes the overhead from rounding can be higher than the fragmentation it helps reduce. The following stat can be used to check if rounding adds too much overhead: - ``"requested_bytes.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``: memory requested by client code, compare this with allocated_bytes to check if allocation rounding adds too much overhead. Args: device (torch.device or int, optional): selected device. Returns statistics for the current device, given by :func:`~torch.cuda.current_device`, if :attr:`device` is ``None`` (default). .. note:: See :ref:`cuda-memory-management` for more details about GPU memory management. .. note:: With :ref:`backend:cudaMallocAsync<cuda-memory-envvars>`, some stats are not meaningful, and are always reported as zero. """result=[]def_recurse_add_to_result(prefix,obj):ifisinstance(obj,dict):iflen(prefix)>0:prefix+="."fork,vinobj.items():_recurse_add_to_result(prefix+k,v)else:result.append((prefix,obj))stats=memory_stats_as_nested_dict(device=device)_recurse_add_to_result("",stats)result.sort()returncollections.OrderedDict(result)
defmemory_stats_as_nested_dict(device:Union[Device,int]=None)->Dict[str,Any]:r"""Return the result of :func:`~torch.cuda.memory_stats` as a nested dictionary."""ifnotis_initialized():return{}device=_get_device_index(device,optional=True)returntorch._C._cuda_memoryStats(device)defreset_accumulated_memory_stats(device:Union[Device,int]=None)->None:r"""Reset the "accumulated" (historical) stats tracked by the CUDA memory allocator. See :func:`~torch.cuda.memory_stats` for details. Accumulated stats correspond to the `"allocated"` and `"freed"` keys in each individual stat dict, as well as `"num_alloc_retries"` and `"num_ooms"`. Args: device (torch.device or int, optional): selected device. Returns statistic for the current device, given by :func:`~torch.cuda.current_device`, if :attr:`device` is ``None`` (default). .. note:: See :ref:`cuda-memory-management` for more details about GPU memory management. """device=_get_device_index(device,optional=True)returntorch._C._cuda_resetAccumulatedMemoryStats(device)
[docs]defreset_peak_memory_stats(device:Union[Device,int]=None)->None:r"""Reset the "peak" stats tracked by the CUDA memory allocator. See :func:`~torch.cuda.memory_stats` for details. Peak stats correspond to the `"peak"` key in each individual stat dict. Args: device (torch.device or int, optional): selected device. Returns statistic for the current device, given by :func:`~torch.cuda.current_device`, if :attr:`device` is ``None`` (default). .. note:: See :ref:`cuda-memory-management` for more details about GPU memory management. """device=_get_device_index(device,optional=True)returntorch._C._cuda_resetPeakMemoryStats(device)
[docs]defreset_max_memory_allocated(device:Union[Device,int]=None)->None:r"""Reset the starting point in tracking maximum GPU memory occupied by tensors for a given device. See :func:`~torch.cuda.max_memory_allocated` for details. Args: device (torch.device or int, optional): selected device. Returns statistic for the current device, given by :func:`~torch.cuda.current_device`, if :attr:`device` is ``None`` (default). .. warning:: This function now calls :func:`~torch.cuda.reset_peak_memory_stats`, which resets /all/ peak memory stats. .. note:: See :ref:`cuda-memory-management` for more details about GPU memory management. """warnings.warn("torch.cuda.reset_max_memory_allocated now calls torch.cuda.reset_peak_memory_stats, ""which resets /all/ peak memory stats.",FutureWarning,)returnreset_peak_memory_stats(device=device)
[docs]defreset_max_memory_cached(device:Union[Device,int]=None)->None:r"""Reset the starting point in tracking maximum GPU memory managed by the caching allocator for a given device. See :func:`~torch.cuda.max_memory_cached` for details. Args: device (torch.device or int, optional): selected device. Returns statistic for the current device, given by :func:`~torch.cuda.current_device`, if :attr:`device` is ``None`` (default). .. warning:: This function now calls :func:`~torch.cuda.reset_peak_memory_stats`, which resets /all/ peak memory stats. .. note:: See :ref:`cuda-memory-management` for more details about GPU memory management. """warnings.warn("torch.cuda.reset_max_memory_cached now calls torch.cuda.reset_peak_memory_stats, ""which resets /all/ peak memory stats.",FutureWarning,)returnreset_peak_memory_stats(device=device)
[docs]defmemory_allocated(device:Union[Device,int]=None)->int:r"""Return the current GPU memory occupied by tensors in bytes for a given device. Args: device (torch.device or int, optional): selected device. Returns statistic for the current device, given by :func:`~torch.cuda.current_device`, if :attr:`device` is ``None`` (default). .. note:: This is likely less than the amount shown in `nvidia-smi` since some unused memory can be held by the caching allocator and some context needs to be created on GPU. See :ref:`cuda-memory-management` for more details about GPU memory management. """returnmemory_stats(device=device).get("allocated_bytes.all.current",0)
[docs]defmax_memory_allocated(device:Union[Device,int]=None)->int:r"""Return the maximum GPU memory occupied by tensors in bytes for a given device. By default, this returns the peak allocated memory since the beginning of this program. :func:`~torch.cuda.reset_peak_memory_stats` can be used to reset the starting point in tracking this metric. For example, these two functions can measure the peak allocated memory usage of each iteration in a training loop. Args: device (torch.device or int, optional): selected device. Returns statistic for the current device, given by :func:`~torch.cuda.current_device`, if :attr:`device` is ``None`` (default). .. note:: See :ref:`cuda-memory-management` for more details about GPU memory management. """returnmemory_stats(device=device).get("allocated_bytes.all.peak",0)
[docs]defmemory_reserved(device:Union[Device,int]=None)->int:r"""Return the current GPU memory managed by the caching allocator in bytes for a given device. Args: device (torch.device or int, optional): selected device. Returns statistic for the current device, given by :func:`~torch.cuda.current_device`, if :attr:`device` is ``None`` (default). .. note:: See :ref:`cuda-memory-management` for more details about GPU memory management. """returnmemory_stats(device=device).get("reserved_bytes.all.current",0)
[docs]defmax_memory_reserved(device:Union[Device,int]=None)->int:r"""Return the maximum GPU memory managed by the caching allocator in bytes for a given device. By default, this returns the peak cached memory since the beginning of this program. :func:`~torch.cuda.reset_peak_memory_stats` can be used to reset the starting point in tracking this metric. For example, these two functions can measure the peak cached memory amount of each iteration in a training loop. Args: device (torch.device or int, optional): selected device. Returns statistic for the current device, given by :func:`~torch.cuda.current_device`, if :attr:`device` is ``None`` (default). .. note:: See :ref:`cuda-memory-management` for more details about GPU memory management. """returnmemory_stats(device=device).get("reserved_bytes.all.peak",0)
[docs]@deprecated("`torch.cuda.memory_cached` has been renamed to `torch.cuda.memory_reserved`",category=FutureWarning,)defmemory_cached(device:Union[Device,int]=None)->int:r"""Deprecated; see :func:`~torch.cuda.memory_reserved`."""returnmemory_reserved(device=device)
[docs]@deprecated("`torch.cuda.max_memory_cached` has been renamed to `torch.cuda.max_memory_reserved`",category=FutureWarning,)defmax_memory_cached(device:Union[Device,int]=None)->int:r"""Deprecated; see :func:`~torch.cuda.max_memory_reserved`."""returnmax_memory_reserved(device=device)
[docs]defmemory_snapshot():r"""Return a snapshot of the CUDA memory allocator state across all devices. Interpreting the output of this function requires familiarity with the memory allocator internals. .. note:: See :ref:`cuda-memory-management` for more details about GPU memory management. """returntorch._C._cuda_memorySnapshot()["segments"]
[docs]defmemory_summary(device:Union[Device,int]=None,abbreviated:bool=False)->str:r"""Return a human-readable printout of the current memory allocator statistics for a given device. This can be useful to display periodically during training, or when handling out-of-memory exceptions. Args: device (torch.device or int, optional): selected device. Returns printout for the current device, given by :func:`~torch.cuda.current_device`, if :attr:`device` is ``None`` (default). abbreviated (bool, optional): whether to return an abbreviated summary (default: False). .. note:: See :ref:`cuda-memory-management` for more details about GPU memory management. """device=_get_device_index(device,optional=True)stats=memory_stats(device=device)def_format_size(sz,pref_sz):prefixes=["B ","KiB","MiB","GiB","TiB","PiB"]prefix=prefixes[0]fornew_prefixinprefixes[1:]:ifpref_sz<768*1024:breakprefix=new_prefixsz//=1024pref_sz/=1024returnf"{sz:6d}{prefix}"def_format_count(cnt,pref_cnt):prefixes=[" ","K","M"]prefix=prefixes[0]fornew_prefixinprefixes[1:]:ifpref_cnt<750*1000:breakprefix=new_prefixcnt//=1000pref_cnt/=1000returnf"{cnt:7d}{prefix} "metrics_to_display=[("allocated_bytes","Allocated memory",_format_size),("active_bytes","Active memory",_format_size),("requested_bytes","Requested memory",_format_size),("reserved_bytes","GPU reserved memory",_format_size),("inactive_split_bytes","Non-releasable memory",_format_size),("allocation","Allocations",_format_count),("active","Active allocs",_format_count),("segment","GPU reserved segments",_format_count),("inactive_split","Non-releasable allocs",_format_count),]lines=[]lines.append("="*75)lines.append(" {_:16} PyTorch CUDA memory summary, device ID {device:<17d} ")lines.append("-"*75)lines.append(" {_:9} CUDA OOMs: {num_ooms:<12d} | {_:6} cudaMalloc retries: {num_alloc_retries:<8d} ")lines.append("="*75)lines.append(" Metric | Cur Usage | Peak Usage | Tot Alloc | Tot Freed ")formetric_key,metric_name,formatterinmetrics_to_display:lines.append("-"*75)submetrics=[("all",metric_name)]ifnotabbreviated:submetrics.append(("large_pool"," from large pool"))submetrics.append(("small_pool"," from small pool"))current_prefval,peak_prefval,allocated_prefval,freed_prefval=(None,None,None,None,)forsubmetric_key,submetric_nameinsubmetrics:prefix=metric_key+"."+submetric_key+"."current=stats[prefix+"current"]peak=stats[prefix+"peak"]allocated=stats[prefix+"allocated"]freed=stats[prefix+"freed"]ifcurrent_prefvalisNone:current_prefval=currentpeak_prefval=peakallocated_prefval=allocatedfreed_prefval=freedlines.append(f" {submetric_name:<21} | {formatter(current,current_prefval)} | {formatter(peak,peak_prefval)} | "f"{formatter(allocated,allocated_prefval)} | {formatter(freed,freed_prefval)} ",)metrics_to_display=[("oversize_allocations","Oversize allocations",_format_count),("oversize_segments","Oversize GPU segments",_format_count),]formetric_key,metric_name,formatterinmetrics_to_display:lines.append("-"*75)prefix=metric_key+"."current=stats[prefix+"current"]peak=stats[prefix+"peak"]allocated=stats[prefix+"allocated"]freed=stats[prefix+"freed"]lines.append(f" {metric_name:<21} | {formatter(current,current)} | {formatter(peak,peak)} | "f"{formatter(allocated,allocated)} | {formatter(freed,freed)} ",)lines.append("="*75)fmt_dict={"_":"","device":device}fork,vinstats.items():fmt_dict[k.replace(".","-")]=vreturn"|"+"|\n|".join(lines).format(**fmt_dict)+"|\n"
[docs]deflist_gpu_processes(device:Union[Device,int]=None)->str:r"""Return a human-readable printout of the running processes and their GPU memory use for a given device. This can be useful to display periodically during training, or when handling out-of-memory exceptions. Args: device (torch.device or int, optional): selected device. Returns printout for the current device, given by :func:`~torch.cuda.current_device`, if :attr:`device` is ``None`` (default). """ifnottorch.version.hip:try:importpynvml# type: ignore[import]exceptModuleNotFoundError:return"pynvml module not found, please install pynvml"frompynvmlimportNVMLError_DriverNotLoadedtry:pynvml.nvmlInit()exceptNVMLError_DriverNotLoaded:return"cuda driver can't be loaded, is cuda enabled?"device=_get_nvml_device_index(device)handle=pynvml.nvmlDeviceGetHandleByIndex(device)procs=pynvml.nvmlDeviceGetComputeRunningProcesses(handle)else:try:importamdsmi# type: ignore[import]exceptModuleNotFoundError:return"amdsmi module not found, please install amdsmi"try:amdsmi.amdsmi_init()# type: ignore[attr-defined]exceptamdsmi.AmdSmiException:# type: ignore[attr-defined]return"amdsmi driver can't be loaded, is ROCm installed?"device=_get_amdsmi_device_index(device)try:handle=amdsmi.amdsmi_get_processor_handles()[device]# type: ignore[attr-defined]procs=amdsmi.amdsmi_get_gpu_process_list(handle)# type: ignore[attr-defined]exceptamdsmi.AmdSmiException:# type: ignore[attr-defined]return"amdsmi cannot list processes from other users"lines=[]lines.append(f"GPU:{device}")iflen(procs)==0:lines.append("no processes are running")forpinprocs:ifnottorch.version.hip:mem=p.usedGpuMemory/(1024*1024)pid=p.pidelse:try:proc_info=amdsmi.amdsmi_get_gpu_process_info(handle,p)# type: ignore[possibly-undefined]exceptAttributeError:# https://github.com/ROCm/amdsmi/commit/c551c3caedbd903ba828e7fdffa5b56d475a15e7# is a BC-breaking change that removes amdsmi_get_gpu_process_info API from amdsmiproc_info=pmem=proc_info["memory_usage"]["vram_mem"]/(1024*1024)pid=proc_info["pid"]lines.append(f"process {pid:>10d} uses {mem:>12.3f} MB GPU memory")return"\n".join(lines)
[docs]defmem_get_info(device:Union[Device,int]=None)->Tuple[int,int]:r"""Return the global free and total GPU memory for a given device using cudaMemGetInfo. Args: device (torch.device or int or str, optional): selected device. Returns statistic for the current device, given by :func:`~torch.cuda.current_device`, if :attr:`device` is ``None`` (default) or if the device index is not specified. .. note:: See :ref:`cuda-memory-management` for more details about GPU memory management. """ifdeviceisNone:device=torch.cuda.current_device()# optional=True allows `device = torch.device('cuda')` for which device.index is Nonedevice=_get_device_index(device,optional=True)returntorch.cuda.cudart().cudaMemGetInfo(device)
[docs]def_record_memory_history(enabled:Literal[None,"state","all"]="all",*args,**kwargs)->None:"""Enable recording of stack traces associated with memory allocations, so you can tell what allocated any piece of memory in :func:`torch.cuda.memory._snapshot()`. In addition too keeping stack traces with each current allocation and free, this will also enable recording of a history of all alloc/free events. Use :func:`torch.cuda.memory._snapshot()` to retrieve this information, and the tools in `_memory_viz.py` to visualize snapshots. The Python trace collection is fast (2us per trace), so you may consider enabling this on production jobs if you anticipate ever having to debug memory issues. C++ trace collection is also fast (~50ns/frame), which for many typical programs works out to ~2us per trace, but can vary depending on stack depth. Args: enabled (Literal[None, "state", "all"], optional): `None`, disable recording memory history. `"state"`, keep information for currenly allocated memory. `"all"`, additionally keep a history of all alloc/free calls. Defaults to "all". context (Literal[None, "state", "alloc", "all"], optional): `None`, Do not record any tracebacks. `"state"`, Record tracebacks for currently allocated memory. `"alloc"`, additionally keep tracebacks for alloc calls. `"all"`, additionally keep tracebacks for free calls. Defaults to "all". stacks (Literal["python", "all"], optional): `"python"`, include Python, TorchScript, and inductor frames in tracebacks `"all"`, additionally include C++ frames Defaults to "all". max_entries (int, optional): Keep a maximum of `max_entries` alloc/free events in the recorded history recorded. """ifisinstance(enabled,bool):return_record_memory_history_legacy(enabled,*args,**kwargs)else:return_record_memory_history_impl(enabled,*args,**kwargs)
[docs]def_snapshot(device:Union[Device,int]=None):"""Save a snapshot of CUDA memory state at the time it was called. The state is represented as a dictionary with the following structure. .. code-block:: python class Snapshot(TypedDict): segments : List[Segment] device_traces: List[List[TraceEntry]] class Segment(TypedDict): # Segments are memory returned from a cudaMalloc call. # The size of reserved memory is the sum of all Segments. # Segments are cached and reused for future allocations. # If the reuse is smaller than the segment, the segment # is split into more then one Block. # empty_cache() frees Segments that are entirely inactive. address: int total_size: int # cudaMalloc'd size of segment stream: int segment_type: Literal['small', 'large'] # 'large' (>1MB) allocated_size: int # size of memory in use active_size: int # size of memory in use or in active_awaiting_free state blocks : List[Block] class Block(TypedDict): # A piece of memory returned from the allocator, or # current cached but inactive. size: int requested_size: int # size requested during malloc, may be smaller than # size due to rounding address: int state: Literal['active_allocated', # used by a tensor 'active_awaiting_free', # waiting for another stream to finish using # this, then it will become free 'inactive',] # free for reuse frames: List[Frame] # stack trace from where the allocation occurred class Frame(TypedDict): filename: str line: int name: str class TraceEntry(TypedDict): # When `torch.cuda.memory._record_memory_history()` is enabled, # the snapshot will contain TraceEntry objects that record each # action the allocator took. action: Literal[ 'alloc' # memory allocated 'free_requested', # the allocated received a call to free memory 'free_completed', # the memory that was requested to be freed is now # able to be used in future allocation calls 'segment_alloc', # the caching allocator ask cudaMalloc for more memory # and added it as a segment in its cache 'segment_free', # the caching allocator called cudaFree to return memory # to cuda possibly trying free up memory to # allocate more segments or because empty_caches was called 'oom', # the allocator threw an OOM exception. 'size' is # the requested number of bytes that did not succeed 'snapshot' # the allocator generated a memory snapshot # useful to coorelate a previously taken # snapshot with this trace ] addr: int # not present for OOM frames: List[Frame] size: int stream: int device_free: int # only present for OOM, the amount of # memory cuda still reports to be free Returns: The Snapshot dictionary object """return_C._cuda_memorySnapshot()
[docs]def_dump_snapshot(filename="dump_snapshot.pickle"):""" Save a pickled version of the `torch.memory._snapshot()` dictionary to a file. This file can be opened by the interactive snapshot viewer at pytorch.org/memory_viz Args: filename (str, optional): Name of the file to create. Defaults to "dump_snapshot.pickle". """s=_snapshot()withopen(filename,"wb")asf:pickle.dump(s,f)
[docs]defget_allocator_backend()->str:r"""Return a string describing the active allocator backend as set by ``PYTORCH_CUDA_ALLOC_CONF``. Currently available backends are ``native`` (PyTorch's native caching allocator) and `cudaMallocAsync`` (CUDA's built-in asynchronous allocator). .. note:: See :ref:`cuda-memory-management` for details on choosing the allocator backend. """returntorch._C._cuda_getAllocatorBackend()
class_CUDAAllocator:r"""Wrapper over internal CUDA memory allocators."""def__init__(self,allocator:torch._C._cuda_CUDAAllocator):self._allocator=allocatordefallocator(self):returnself._allocator
[docs]classCUDAPluggableAllocator(_CUDAAllocator):r"""CUDA memory allocator loaded from a so file."""def__init__(self,path_to_so_file:str,alloc_fn_name:str,free_fn_name:str):r"""Memory allocators are compiled in .so files and loaded dynamically using ctypes. To change the active allocator use the :func:`torch.memory.cuda.change_current_allocator` function. Args: path_to_so_file(str): Path in the filesystem to the `.so` file containing the allocator functions alloc_fn_name(str): Name of the function to perform the memory allocation in the so file. The signature must be: void* alloc_fn_name(ssize_t size, int device, cudaStream_t stream); free_fn_name(str): Name of the function to perform the memory release in the so file. The signature must be: void free_fn_name(void* ptr, size_t size, cudaStream_t stream); .. warning:: This is currently supported only in unix OSs .. note:: See :ref:`cuda-memory-management` for details on creating and using a custom allocator """allocator=ctypes.CDLL(path_to_so_file)alloc_fn=ctypes.cast(getattr(allocator,alloc_fn_name),ctypes.c_void_p).valuefree_fn=ctypes.cast(getattr(allocator,free_fn_name),ctypes.c_void_p).valueassertalloc_fnisnotNoneassertfree_fnisnotNoneself._allocator=torch._C._cuda_customAllocator(alloc_fn,free_fn)
[docs]defchange_current_allocator(allocator:_CUDAAllocator)->None:r"""Change the currently used memory allocator to be the one provided. If the current allocator has already been used/initialized, this function will error. Args: allocator (torch.cuda.memory._CUDAAllocator): allocator to be set as the active one. .. note:: See :ref:`cuda-memory-management` for details on creating and using a custom allocator """torch._C._cuda_changeCurrentAllocator(allocator.allocator())
def_get_current_allocator()->_CUDAAllocator:r"""Return the allocator being currently used. .. note:: See :ref:`cuda-memory-management` for details on creating and using a custom allocator """return_CUDAAllocator(torch._C._cuda_getAllocator())
[docs]classMemPoolContext(_MemPoolContext):r"""MemPoolContext holds the currently active pool and stashes the previous pool. On deletion it makes the previous pool active. Args: pool(torch.cuda.MemPool): a MemPool object to be made active so that allocations route to this pool. """def__init__(self,pool:_MemPool):super().__init__(pool)
[docs]@staticmethoddefactive_pool()->Optional[_MemPool]:r"""Returns the active MemPool"""return_MemPoolContext.active_pool()
[docs]classMemPool(_MemPool):r"""MemPool represents a pool of memory in a caching allocator. Currently, it's just the ID of the pool object maintained in the CUDACachingAllocator. Args: allocator(torch._C._cuda_CUDAAllocator, optional): a torch._C._cuda_CUDAAllocator object that can be used to define how memory gets allocated in the pool. If :attr:`allocator` is ``None`` (default), memory allocation follows the default/ current configuration of the CUDACachingAllocator. """def__init__(self,allocator:Optional[_cuda_CUDAAllocator]=None):super().__init__(allocator,True)@propertydefid(self)->Tuple[int,int]:r"""Returns the ID of this pool as a tuple of two ints."""returnsuper().id@propertydefallocator(self)->Optional[_cuda_CUDAAllocator]:r"""Returns the allocator this MemPool routes allocations to."""returnsuper().allocator
[docs]defuse_count(self)->int:r"""Returns the reference count of this pool."""returnsuper().use_count()
[docs]defsnapshot(self):r"""Return a snapshot of the CUDA memory allocator pool state across all devices. Interpreting the output of this function requires familiarity with the memory allocator internals. .. note:: See :ref:`cuda-memory-management` for more details about GPU memory management. """try:ctx=MemPoolContext(self)snapshot=torch.cuda.memory_snapshot()finally:delctxreturnsnapshot
[docs]@contextlib.contextmanagerdefuse_mem_pool(pool:MemPool,device:Union[Device,int]=None):r"""A context manager that routes allocations to a given pool. Args: pool(torch.cuda.MemPool): a MemPool object to be made active so that allocations route to this pool. device (torch.device or int, optional): selected device. Uses MemPool on the current device, given by :func:`~torch.cuda.current_device`, if :attr:`device` is ``None`` (default). """ctx=MemPoolContext(pool)device_index=(torch.cuda.current_device()ifdeviceisNoneelse_get_device_index(device))_cuda_beginAllocateToPool(device_index,pool.id)try:yieldfinally:_cuda_endAllocateCurrentStreamToPool(device_index,pool.id)_cuda_releasePool(device_index,pool.id)delctx
Docs
Access comprehensive developer documentation for PyTorch
To analyze traffic and optimize your experience, we serve cookies on this site. By clicking or navigating, you agree to allow our usage of cookies. As the current maintainers of this site, Facebook’s Cookies Policy applies. Learn more, including about available controls: Cookies Policy.