Shortcuts

Note

This page describes an internal API which is not intended to be used outside of the PyTorch codebase and can be modified or removed without notice.

Source code for torch.ao.ns._numeric_suite_fx

# mypy: allow-untyped-defs
"""
This module contains tooling to compare weights and activations
across models. Example usage::

    import copy
    import torch
    import torch.ao.quantization.quantize_fx as quantize_fx
    import torch.ao.ns._numeric_suite_fx as ns

    m = torch.nn.Sequential(torch.nn.Conv2d(1, 1, 1)).eval()
    mp = quantize_fx.prepare_fx(m, {'': torch.ao.quantization.default_qconfig})
    # We convert a copy because we need the original prepared model
    # to be available for comparisons, and `quantize_fx.convert_fx` is inplace.
    mq = quantize_fx.convert_fx(copy.deepcopy(mp))

    #
    # Comparing weights
    #

    # extract weight pairs
    weight_comparison = ns.extract_weights('a', mp, 'b', mq)

    # add SQNR for each comparison, inplace
    ns.extend_logger_results_with_comparison(
        weight_comparison, 'a', 'b', torch.ao.ns.fx.utils.compute_sqnr,
        'sqnr')

    # weight_comparison contains the weights from `mp` and `mq` stored
    # in pairs, and can be used for further analysis.


    #
    # Comparing activations, with error propagation
    #

    # add loggers
    mp_ns, mq_ns = ns.add_loggers(
        'a', copy.deepcopy(mp),
        'b', copy.deepcopy(mq),
        ns.OutputLogger)

    # send an example datum to capture intermediate activations
    datum = torch.randn(1, 1, 1, 1)
    mp_ns(datum)
    mq_ns(datum)

    # extract intermediate activations
    act_comparison = ns.extract_logger_info(
        mp_ns, mq_ns, ns.OutputLogger, 'b')

    # add SQNR for each comparison, inplace
    ns.extend_logger_results_with_comparison(
        act_comparison, 'a', 'b', torch.ao.ns.fx.utils.compute_sqnr,
        'sqnr')

    # act_comparison contains the activations from `mp_ns` and `mq_ns` stored
    # in pairs, and can be used for further analysis.

    #
    # Comparing activations, without error propagation
    #

    # create shadow model
    mp_shadows_mq = ns.add_shadow_loggers(
        'a', copy.deepcopy(mp),
        'b', copy.deepcopy(mq),
        ns.OutputLogger)

    # send an example datum to capture intermediate activations
    datum = torch.randn(1, 1, 1, 1)
    mp_shadows_mq(datum)

    # extract intermediate activations
    shadow_act_comparison = ns.extract_shadow_logger_info(
        mp_shadows_mq, ns.OutputLogger, 'b')

    # add SQNR for each comparison, inplace
    ns.extend_logger_results_with_comparison(
        shadow_act_comparison, 'a', 'b', torch.ao.ns.fx.utils.compute_sqnr,
        'sqnr')

    # shadow_act_comparison contains the activations from `mp_ns` and `mq_ns` stored
    # in pairs, and can be used for further analysis.

"""

import collections
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Type, TYPE_CHECKING

import torch
import torch.ao.quantization.quantize_fx as quantize_fx
import torch.nn as nn
from torch.ao.ns.fx.graph_matcher import (
    get_matching_subgraph_pairs,
    get_type_a_related_to_b,
)
from torch.ao.ns.fx.mappings import get_base_name_to_sets_of_related_ops
from torch.ao.ns.fx.n_shadows_utils import (
    _get_dedup_subgraphs,
    create_add_loggers_graph,
    create_n_transformed_and_logged_copies_of_subgraph,
    create_results_comparison,
    extract_weight_comparison,
    group_results_by_subgraph,
    OutputProp,
    print_n_shadows_summary,
    SHADOW_WRAPPER_NODE_NAME_PREFIX,
)
from torch.ao.ns.fx.qconfig_multi_mapping import QConfigMultiMapping
from torch.ao.quantization import QConfigMapping
from torch.ao.quantization.backend_config import BackendConfig
from torch.ao.quantization.backend_config.utils import (
    get_fusion_pattern_to_root_node_getter,
)
from torch.ao.quantization.fx.graph_module import _get_observed_graph_module_attr
from torch.ao.quantization.fx.match_utils import _find_matches
from torch.ao.quantization.fx.qconfig_mapping_utils import (
    _generate_node_name_to_qconfig,
)
from torch.ao.quantization.fx.quantize_handler import _get_pattern_to_quantize_handlers
from torch.fx import GraphModule
from torch.fx.graph import Node

from .fx.graph_passes import add_loggers_to_model, create_a_shadows_b
from .fx.ns_types import NSNodeTargetType, NSResultsType, NSSingleResultValuesType
from .fx.utils import (
    get_target_type_str,
    maybe_add_missing_fqns,
    rekey_logger_info_on_node_name_of_model,
)
from .fx.weight_utils import extract_weight_from_node


if TYPE_CHECKING:
    from torch.ao.quantization.qconfig import QConfigAny

RNNReturnType = Tuple[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]


[docs]class OutputLogger(nn.Module): """ Base class for capturing intermediate values. """ stats: List[torch.Tensor] stats_rnn: List[RNNReturnType] # Mark as impure so that calls to it will not be removed during DCE. _is_impure = True def __init__( self, ref_node_name: str, prev_node_name: str, model_name: str, ref_name: str, prev_node_target_type: str, ref_node_target_type: str, results_type: str, index_within_arg: int, index_of_arg: int, fqn: Optional[str], qconfig_str: Optional[str] = "", ): super().__init__() self.stats: List[torch.Tensor] = [] self.stats_rnn: List[RNNReturnType] = [] # name of the node which was responsible for adding this logger # Note: # - if we are logging node outputs, this is the same as prev_node_name # - if we are logging node inputs, this is the name of the node # whose input this logger is logging. # # example, where logger1 is logging input of op1 and logger2 is logging # the output of op1: # # x1 -> logger1 -> op1 -> logger2 -> x2 # # in this example, # - logger1's prev_node_name is x1 and ref_node_name is op1 # - logger2's prev_node_name is op1 and ref_node_name is op1 self.ref_node_name = ref_node_name # name of the node whose output this Logger is capturing self.prev_node_name = prev_node_name # name of the model from which the node originated from self.model_name = model_name # reference name, used to match loggers from separate models # to each other self.ref_name = ref_name # type of the target of the node whose output this logger is logging self.prev_node_target_type = prev_node_target_type # type of the target of the node which was responsible for adding this # logger self.ref_node_target_type = ref_node_target_type # what kind of values are inside of stats self.results_type = results_type # index of this node within the arg of the input/output node # for example, in cat([x1, x2, x3], dim=0), x2 would have index_within_arg == 1 self.index_within_arg = index_within_arg # index of this node within the args of the input/output node # for example, in add(x1, x2), x2 would have index_of_arg == 1 self.index_of_arg = index_of_arg # fully qualified name self.fqn = fqn # if loggers are added before prepare_fx, but we do not want # collect results of calibration, only results after convert_fx # so, we add a flag to control whether this logger collects data self.enabled = True # string representation of qconfig self.qconfig_str = qconfig_str # this can be turned off to reduce memory usage during calibration self.save_activations = True # Note: cannot annotate the type of x because TorchScript does not support # the Union type.
[docs] def forward(self, x): # fmt: off """ """ # blank docblock to make autodoc happy # fmt: on # TODO(future PR): consider designing this better, as the difference # between these two flags is subtle and not obvious. if not self.enabled: return x if not self.save_activations: return x # TODO(future PR): consider refactoring this to better reuse the parent # class if isinstance(x, torch.Tensor): self.stats.append(x.detach()) elif isinstance(x, tuple) and len(x) == 2 and len(x[1]) == 2: new_res = (x[0].detach(), (x[1][0].detach(), x[1][1].detach())) self.stats_rnn.append(new_res) return x
def __repr__(self): clean_dict = { k: v for k, v in self.__dict__.items() # skip nn.Module keys if (k != "training") and not k.startswith("_") } return f"OutputLogger({clean_dict})"
[docs]class OutputComparisonLogger(OutputLogger): """ Same as OutputLogger, but also requires the original activation in order to calculate the comparison at calibration time """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # TODO(future PR): make the comparison function configurable self.comparison_fn = torch.ao.ns.fx.utils.compute_sqnr self.comparison_fn_name = "sqnr" # precalculated comparisons of logger output versus reference self.comparisons = [] # precalculated comparisons function
[docs] def forward(self, x, x_ref): # type: ignore[override] # fmt: off """ """ # blank docblock to make autodoc happy # fmt: on if not self.enabled: return x assert isinstance(x, torch.Tensor), "non-tensor inputs not yet supported" if self.save_activations: # save the activation, for debugging self.stats.append(x.detach()) # save the comparison self.comparisons.append(self.comparison_fn(x, x_ref)) return x
def __repr__(self): clean_dict = { k: v for k, v in self.__dict__.items() # skip nn.Module keys if (k != "training") and not k.startswith("_") } return f"OutputComparisonLogger({clean_dict})"
[docs]class NSTracer(quantize_fx.QuantizationTracer): """ Just like a regular FX quantization tracer, but treats observers and fake_quantize modules as leaf modules. """
[docs] def is_leaf_module(self, m: torch.nn.Module, module_qualified_name: str) -> bool: # fmt: off """ """ # blank docblock to make autodoc happy # fmt: on if isinstance(m, torch.ao.quantization.ObserverBase): return True elif isinstance(m, torch.ao.quantization.FakeQuantizeBase): return True return super().is_leaf_module(m, module_qualified_name)
def _extract_weights_one_model( model_name: str, model: GraphModule, nodes_and_names_to_instrument: List[Tuple[Node, str]], results: NSResultsType, op_to_type_to_weight_extraction_fn: Optional[ Dict[str, Dict[Callable, Callable]] ] = None, ) -> None: torch._C._log_api_usage_once( "quantization_api._numeric_suite_fx._extract_weights_one_model" ) for node, ref_name in nodes_and_names_to_instrument: res_type = NSSingleResultValuesType.WEIGHT.value extracted_weight = extract_weight_from_node( node, model, op_to_type_to_weight_extraction_fn ) if extracted_weight: if ref_name not in results: results[ref_name] = {res_type: {}} results[ref_name][res_type][model_name] = [extracted_weight] def _extract_weights_impl( model_name_a: str, gm_a: GraphModule, model_name_b: str, gm_b: GraphModule, base_name_to_sets_of_related_ops: Optional[Dict[str, Set[NSNodeTargetType]]] = None, unmatchable_types_map: Optional[Dict[str, Set[NSNodeTargetType]]] = None, op_to_type_to_weight_extraction_fn: Optional[ Dict[str, Dict[Callable, Callable]] ] = None, ) -> NSResultsType: torch._C._log_api_usage_once( "quantization_api._numeric_suite_fx._extract_weights_impl" ) matched_subgraph_pairs = get_matching_subgraph_pairs( gm_a, gm_b, base_name_to_sets_of_related_ops, unmatchable_types_map ) # split the subgraph pairs into one data structure for each model nodes_and_names_to_instrument_a: List[Tuple[Node, str]] = [] nodes_and_names_to_instrument_b: List[Tuple[Node, str]] = [] for match_name, match in matched_subgraph_pairs.items(): subgraph_a, subgraph_b = match nodes_and_names_to_instrument_a.append((subgraph_a.base_op_node, match_name)) nodes_and_names_to_instrument_b.append((subgraph_b.base_op_node, match_name)) # populate the results, one model at a time results: NSResultsType = {} _extract_weights_one_model( model_name_a, gm_a, nodes_and_names_to_instrument_a, results, op_to_type_to_weight_extraction_fn, ) _extract_weights_one_model( model_name_b, gm_b, nodes_and_names_to_instrument_b, results, op_to_type_to_weight_extraction_fn, ) # fill in missing fqn entries maybe_add_missing_fqns(results) # rekey on names of nodes in gm_b results = rekey_logger_info_on_node_name_of_model(results, model_name_b) return results
[docs]def extract_weights( model_name_a: str, model_a: nn.Module, model_name_b: str, model_b: nn.Module, base_name_to_sets_of_related_ops: Optional[Dict[str, Set[NSNodeTargetType]]] = None, unmatchable_types_map: Optional[Dict[str, Set[NSNodeTargetType]]] = None, op_to_type_to_weight_extraction_fn: Optional[ Dict[str, Dict[Callable, Callable]] ] = None, ) -> NSResultsType: """ Extract weights from model A and model B, and return a comparison. Args: model_name_a: string name of model A to use in results model_a: model A model_name_b: string name of model B to use in results model_b: model B base_name_to_sets_of_related_ops: optional override of subgraph base nodes, subject to change unmatchable_types_map: optional override of unmatchable types, subject to change op_to_type_to_weight_extraction_fn: optional override of function which extracts weight from a type, subject to change Return: NSResultsType, containing the weight comparisons """ torch._C._log_api_usage_once("quantization_api._numeric_suite_fx.extract_weights") if base_name_to_sets_of_related_ops is None: base_name_to_sets_of_related_ops = get_base_name_to_sets_of_related_ops() type_a_related_to_b = get_type_a_related_to_b(base_name_to_sets_of_related_ops) # TODO(future PR): expose these skipped_module_names: List[str] = [] skipped_module_classes: List[Callable] = [] tracer_a = NSTracer(skipped_module_names, skipped_module_classes) tracer_b = NSTracer(skipped_module_names, skipped_module_classes) gm_a = GraphModule(model_a, tracer_a.trace(model_a)) maybe_model_a_node_name_to_scope = _get_observed_graph_module_attr( model_a, "node_name_to_scope" ) if maybe_model_a_node_name_to_scope is not None: gm_a._node_name_to_scope = maybe_model_a_node_name_to_scope gm_b = GraphModule(model_b, tracer_b.trace(model_b)) maybe_model_b_node_name_to_scope = _get_observed_graph_module_attr( model_b, "node_name_to_scope" ) if maybe_model_b_node_name_to_scope is not None: gm_b._node_name_to_scope = maybe_model_b_node_name_to_scope return _extract_weights_impl( model_name_a, gm_a, model_name_b, gm_b, base_name_to_sets_of_related_ops, unmatchable_types_map, op_to_type_to_weight_extraction_fn, )
def _add_loggers_one_model( model_name: str, model: GraphModule, nodes_and_names_to_instrument_inputs: List[Tuple[Node, str, str]], nodes_and_names_to_instrument_outputs: List[Tuple[Node, str, str]], logger_cls: Callable, ) -> nn.Module: torch._C._log_api_usage_once( "quantization_api._numeric_suite_fx._add_loggers_one_model" ) # TODO(future PR): do not observe nodes we do not care # about (both fp32, denylist, etc) node_to_instrument_inputs_to_ref_name: Dict[Node, Tuple[str, str]] = {} node_to_instrument_outputs_to_ref_name: Dict[Node, Tuple[str, str]] = {} for node, ref_name, ref_node_type in nodes_and_names_to_instrument_inputs: node_to_instrument_inputs_to_ref_name[node] = (ref_name, ref_node_type) for node, ref_name, ref_node_type in nodes_and_names_to_instrument_outputs: node_to_instrument_outputs_to_ref_name[node] = (ref_name, ref_node_type) model = add_loggers_to_model( model, node_to_instrument_inputs_to_ref_name, node_to_instrument_outputs_to_ref_name, logger_cls, model_name, ) return model def _add_loggers_impl( name_a: str, gm_a: GraphModule, name_b: str, gm_b: GraphModule, logger_cls: Callable, should_log_inputs: bool, base_name_to_sets_of_related_ops: Optional[Dict[str, Set[NSNodeTargetType]]] = None, unmatchable_types_map: Optional[Dict[str, Set[NSNodeTargetType]]] = None, ) -> Tuple[nn.Module, nn.Module]: torch._C._log_api_usage_once("quantization_api._numeric_suite_fx._add_loggers_impl") matched_subgraph_pairs = get_matching_subgraph_pairs( gm_a, gm_b, base_name_to_sets_of_related_ops, unmatchable_types_map ) nodes_and_names_to_instrument_inputs_a = [] nodes_and_names_to_instrument_inputs_b = [] nodes_and_names_to_instrument_outputs_a = [] nodes_and_names_to_instrument_outputs_b = [] for match_name, (subgraph_a, subgraph_b) in matched_subgraph_pairs.items(): ref_node_type_a = get_target_type_str(subgraph_a.base_op_node, gm_a) ref_node_type_b = get_target_type_str(subgraph_b.base_op_node, gm_b) # Note: for matching inputs we use start_node, such as observing # the input of linear in linear-relu if should_log_inputs: nodes_and_names_to_instrument_inputs_a.append( (subgraph_a.start_node, match_name, ref_node_type_a) ) nodes_and_names_to_instrument_inputs_b.append( (subgraph_b.start_node, match_name, ref_node_type_b) ) # Note: for matching activations we always use end_node, # such as observing the output of relu in linear-relu nodes_and_names_to_instrument_outputs_a.append( (subgraph_a.end_node, match_name, ref_node_type_a) ) nodes_and_names_to_instrument_outputs_b.append( (subgraph_b.end_node, match_name, ref_node_type_b) ) new_model_a = _add_loggers_one_model( name_a, gm_a, nodes_and_names_to_instrument_inputs_a, nodes_and_names_to_instrument_outputs_a, logger_cls, ) new_model_b = _add_loggers_one_model( name_b, gm_b, nodes_and_names_to_instrument_inputs_b, nodes_and_names_to_instrument_outputs_b, logger_cls, ) return (new_model_a, new_model_b)
[docs]def add_loggers( name_a: str, model_a: nn.Module, name_b: str, model_b: nn.Module, logger_cls: Callable, should_log_inputs: bool = False, base_name_to_sets_of_related_ops: Optional[Dict[str, Set[NSNodeTargetType]]] = None, unmatchable_types_map: Optional[Dict[str, Set[NSNodeTargetType]]] = None, ) -> Tuple[nn.Module, nn.Module]: """ Instrument model A and model B with loggers. Args: name_a: string name of model A to use in results model_a: model A name_b: string name of model B to use in results model_b: model B logger_cls: class of Logger to use base_name_to_sets_of_related_ops: optional override of subgraph base nodes, subject to change unmatchable_types_map: optional override of unmatchable types, subject to change Return: Returns a tuple of (model_a_with_loggers, model_b_with_loggers). Modifies both models inplace. """ torch._C._log_api_usage_once("quantization_api._numeric_suite_fx.add_loggers") # TODO(future PR): expose these skipped_module_names: List[str] = [] skipped_module_classes: List[Callable] = [] tracer_a = NSTracer(skipped_module_names, skipped_module_classes) tracer_b = NSTracer(skipped_module_names, skipped_module_classes) gm_a = GraphModule(model_a, tracer_a.trace(model_a)) maybe_model_a_node_name_to_scope = _get_observed_graph_module_attr( model_a, "node_name_to_scope" ) if maybe_model_a_node_name_to_scope is not None: gm_a._node_name_to_scope = maybe_model_a_node_name_to_scope gm_b = GraphModule(model_b, tracer_b.trace(model_b)) maybe_model_b_node_name_to_scope = _get_observed_graph_module_attr( model_b, "node_name_to_scope" ) if maybe_model_b_node_name_to_scope is not None: gm_b._node_name_to_scope = maybe_model_b_node_name_to_scope return _add_loggers_impl( name_a, gm_a, name_b, gm_b, logger_cls, should_log_inputs=should_log_inputs, base_name_to_sets_of_related_ops=base_name_to_sets_of_related_ops, unmatchable_types_map=unmatchable_types_map, )
def _extract_logger_info_one_model( model: nn.Module, results: NSResultsType, logger_cls: Callable, ) -> None: torch._C._log_api_usage_once( "quantization_api._numeric_suite_fx._extract_logger_info_one_model" ) for gm_name, mod in model.named_modules(): # TODO(future PR): better check when scripted is_logger = isinstance(mod, logger_cls) or ( # type: ignore[arg-type] isinstance(mod, torch.jit.RecursiveScriptModule) and mod.original_name == "OutputLogger" ) if is_logger: key = mod.ref_name if key not in results: results[key] = {} assert ( mod.model_name not in results[key] ), f"{mod.model_name} is already present in results" if mod.results_type not in results[key]: results[key][mod.results_type] = {} if mod.model_name not in results[key][mod.results_type]: results[key][mod.results_type][mod.model_name] = [] stats_to_use = mod.stats if len(mod.stats_rnn) > 0: stats_to_use = mod.stats_rnn data = { "type": mod.results_type, "values": stats_to_use, "ref_node_name": mod.ref_node_name, "ref_node_target_type": mod.ref_node_target_type, "prev_node_name": mod.prev_node_name, "prev_node_target_type": mod.prev_node_target_type, "index_within_arg": mod.index_within_arg, "index_of_arg": mod.index_of_arg, "fqn": mod.fqn, "qconfig_str": mod.qconfig_str, } if hasattr(mod, "comparisons"): data["comparisons"] = mod.comparisons data["comparison_fn_name"] = mod.comparison_fn_name else: data["comparisons"] = [] data["comparison_fn_name"] = "" results[key][mod.results_type][mod.model_name].append(data) # ensure the list stays sorted results[key][mod.results_type][mod.model_name].sort( key=lambda res: f"{res['index_of_arg']}:{res['index_within_arg']}" ) # TODO(future PR): align on naming # this is equivalent of just the comparison extraction part of `ns.compare_model_outputs`
[docs]def extract_logger_info( model_a: nn.Module, model_b: nn.Module, logger_cls: Callable, model_name_to_use_for_layer_names: str, ) -> NSResultsType: """ Traverse all loggers in `model_a` and `model_b`, and extract the logged information. Args: model_a: model A model_b: model B logger_cls: class of Logger to use model_name_to_use_for_layer_names: string name of model to use for layer names in the output Return: NSResultsType, containing the logged comparisons """ torch._C._log_api_usage_once( "quantization_api._numeric_suite_fx.extract_logger_info" ) results: NSResultsType = {} for model in (model_a, model_b): _extract_logger_info_one_model(model, results, logger_cls) # fill in missing fqn entries maybe_add_missing_fqns(results) # rekey on the name of model b results = rekey_logger_info_on_node_name_of_model( results, model_name_to_use_for_layer_names ) return results
def _add_shadow_loggers_impl( name_a: str, gm_a: GraphModule, name_b: str, gm_b: GraphModule, logger_cls: Callable, should_log_inputs: bool, base_name_to_sets_of_related_ops: Optional[Dict[str, Set[NSNodeTargetType]]] = None, node_type_to_io_type_map: Optional[Dict[str, Set[NSNodeTargetType]]] = None, unmatchable_types_map: Optional[Dict[str, Set[NSNodeTargetType]]] = None, ) -> nn.Module: torch._C._log_api_usage_once( "quantization_api._numeric_suite_fx._add_shadow_loggers_impl" ) matched_subgraph_pairs = get_matching_subgraph_pairs( gm_a, gm_b, base_name_to_sets_of_related_ops, unmatchable_types_map ) gm_a_shadows_b = create_a_shadows_b( name_a, gm_a, name_b, gm_b, matched_subgraph_pairs, logger_cls, should_log_inputs=should_log_inputs, node_type_to_io_type_map=node_type_to_io_type_map, ) return gm_a_shadows_b
[docs]def add_shadow_loggers( name_a: str, model_a: nn.Module, name_b: str, model_b: nn.Module, logger_cls: Callable, should_log_inputs: bool = False, base_name_to_sets_of_related_ops: Optional[Dict[str, Set[NSNodeTargetType]]] = None, node_type_to_io_type_map: Optional[Dict[str, Set[NSNodeTargetType]]] = None, unmatchable_types_map: Optional[Dict[str, Set[NSNodeTargetType]]] = None, ) -> nn.Module: """ Instrument model A and model B with shadow loggers. Args: name_a: string name of model A to use in results model_a: model A name_b: string name of model B to use in results model_b: model B logger_cls: class of Logger to use should_log_inputs: whether to log inputs base_name_to_sets_of_related_ops: optional override of subgraph base nodes, subject to change unmatchable_types_map: optional override of unmatchable types, subject to change """ torch._C._log_api_usage_once( "quantization_api._numeric_suite_fx.add_shadow_loggers" ) # TODO(future PR): expose these skipped_module_names: List[str] = [] skipped_module_classes: List[Callable] = [] tracer_a = NSTracer(skipped_module_names, skipped_module_classes) tracer_b = NSTracer(skipped_module_names, skipped_module_classes) gm_a = GraphModule(model_a, tracer_a.trace(model_a)) maybe_model_a_node_name_to_scope = _get_observed_graph_module_attr( model_a, "node_name_to_scope" ) if maybe_model_a_node_name_to_scope is not None: gm_a._node_name_to_scope = maybe_model_a_node_name_to_scope gm_b = GraphModule(model_b, tracer_b.trace(model_b)) maybe_model_b_node_name_to_scope = _get_observed_graph_module_attr( model_b, "node_name_to_scope" ) if maybe_model_b_node_name_to_scope is not None: gm_b._node_name_to_scope = maybe_model_b_node_name_to_scope return _add_shadow_loggers_impl( name_a, gm_a, name_b, gm_b, logger_cls, should_log_inputs=should_log_inputs, base_name_to_sets_of_related_ops=base_name_to_sets_of_related_ops, node_type_to_io_type_map=node_type_to_io_type_map, unmatchable_types_map=unmatchable_types_map, )
[docs]def extract_shadow_logger_info( model_a_shadows_b: nn.Module, logger_cls: Callable, model_name_to_use_for_layer_names: str, ) -> NSResultsType: """ Traverse all loggers in a shadow model, and extract the logged information. Args: model_a_shadows_b: shadow model logger_cls: class of Logger to use model_name_to_use_for_layer_names: string name of model to use for layer names in the output Return: NSResultsType, containing the logged comparisons """ torch._C._log_api_usage_once( "quantization_api._numeric_suite_fx.extract_shadow_logger_info" ) results: NSResultsType = collections.defaultdict(dict) _extract_logger_info_one_model(model_a_shadows_b, results, logger_cls) # fill in missing fqn entries maybe_add_missing_fqns(results) # rekey on the name of model b results = rekey_logger_info_on_node_name_of_model( results, model_name_to_use_for_layer_names ) return dict(results)
[docs]def extend_logger_results_with_comparison( results: NSResultsType, model_name_1: str, model_name_2: str, comparison_fn: Callable[[torch.Tensor, torch.Tensor], torch.Tensor], comparison_name: str, ) -> None: """ Compares the logged values from `model_name_2` against the corresponding values in `model_name_1`, using `comparison_fn`. Records the result in `model_name_2`'s results under `comparison_name`. Modifies `results` inplace. Args: results: the result data structure from `extract_logger_info` or `extract_shadow_logger_info`. model_name_1: string name of model 1 model_name_2: string name of model 2 comparison_fn: function to compare two Tensors comparison_name: string name of model to use for layer names in the output """ for results_type_to_results in results.values(): for model_name_to_results in results_type_to_results.values(): assert ( model_name_1 in model_name_to_results ), f"{model_name_1} not found in results" assert ( model_name_2 in model_name_to_results ), f"{model_name_2} not found in results" results_1 = model_name_to_results[model_name_1] results_2 = model_name_to_results[model_name_2] for result_2 in results_2: index_within_arg_2 = result_2["index_within_arg"] index_of_arg_2 = result_2["index_of_arg"] # find corresponding result_1 result_1 = None for cur_result_1 in results_1: index_within_arg_1 = cur_result_1["index_within_arg"] index_of_arg_1 = cur_result_1["index_of_arg"] if (index_within_arg_1 == index_within_arg_2) and ( index_of_arg_1 == index_of_arg_2 ): result_1 = cur_result_1 break assert result_1 is not None values_1 = result_1["values"] values_2 = result_2["values"] result_2[comparison_name] = [] for value_1, value_2 in zip(values_1, values_2): comparison_result = comparison_fn(value_1, value_2) result_2[comparison_name].append(comparison_result)
[docs]def prepare_n_shadows_model( model: torch.nn.Module, example_inputs: Any, qconfig_multi_mapping: QConfigMultiMapping, backend_config: BackendConfig, custom_prepare_fn: Optional[Callable] = None, custom_prepare_kwargs: Optional[Dict[str, Any]] = None, custom_tracer: Any = None, ) -> GraphModule: """ Given a model with a graph with M ops such as args_kwargs_m -> op_m -> output_m And a set of N qconfigs for each op, creates a new model, with each of the subgraph of `op_m` transformed into .. code:: |---------> op_m_n -> log_m_n | / args_kwargs_m ---------> op_m -> log_m_0 Where op_m_n is op_m wrapped in a submodule and transformed with qconfig_n, and its inner graph looks like .. code:: args_m -------- op_m_prepared_with_qconfig_n -> out_m_n / kwargs_m --- This is useful for testing different quantization of multiple layers in a single pass through the model. High level TODOs for future PRs: * figure out a better way to name the output structure * return a results data structure instead of printing it out * add examples to docblocks """ if custom_tracer is None: tracer = quantize_fx.QuantizationTracer([], []) else: tracer = custom_tracer mt = torch.fx.GraphModule(model, tracer.trace(model)) # this is necessary to ensure logger FQNs get populated mt._node_name_to_scope = tracer.node_name_to_scope # type: ignore[assignment] # run example input propagation, we need this to call prepare_fx on # individual subgraphs output_prop = OutputProp(mt) output_prop.propagate(*example_inputs) # Find the set of subgraphs in the original graph which we need to # consider. modules = dict(mt.named_modules(remove_duplicate=False)) patterns = _get_pattern_to_quantize_handlers(backend_config) root_node_getter_mapping = get_fusion_pattern_to_root_node_getter(backend_config) standalone_module_names: List[str] = [] standalone_module_classes: List[Type] = [] custom_module_classes: List[Type] = [] matches = _find_matches( mt.graph, modules, patterns, root_node_getter_mapping, standalone_module_names, standalone_module_classes, custom_module_classes, ) subgraphs_dedup: Dict[str, List[Node]] = _get_dedup_subgraphs(matches) # generate node to qconfig for each subgraph # TODO(future PR): deduplicate repeating entries list_of_node_name_to_qconfig: List[Dict[str, QConfigAny]] = [] for qconfig_mapping in qconfig_multi_mapping.qconfig_mappings_list: node_name_to_qconfig = _generate_node_name_to_qconfig( mt, modules, mt.graph, qconfig_mapping, tracer.node_name_to_scope ) list_of_node_name_to_qconfig.append(node_name_to_qconfig) # For each region in the model, do the following: # For each qconfig for that region, do the following: # 1. create a copy of the region wrapped in a module # 2. pass original args, original kwargs, and expected output to module # 3. add an output comparison logger and hook it up to compare # actual output to expected output # 4. run `prepare_fx` on the module for subgraph_idx, (match_name, nodes_in_this_subgraph) in enumerate( subgraphs_dedup.items() ): create_n_transformed_and_logged_copies_of_subgraph( mt, subgraph_idx, match_name, nodes_in_this_subgraph, qconfig_multi_mapping.qconfig_mappings_list, list_of_node_name_to_qconfig, custom_prepare_fn, custom_prepare_kwargs, # type: ignore[arg-type] ) return mt
# TODO(future PR): we should rethink the names of all the PNP APIs def _prepare_n_shadows_add_loggers_model( model: torch.nn.Module, example_inputs: Any, qconfig_mapping: QConfigMapping, backend_config: BackendConfig, ) -> torch.nn.Module: r""" Note: this API is not recommended for wide usage, it is only provided for customers who need to migrate from the `add_loggers` API. This creates a model which provides logging for the following problem: if we quantize `model` with `qconfig_mapping` and feed the same input through both models, log the comparisons of corresponding intermediate layers. The problem is solved with a single model. Specifically, we partition `model` into N subgraphs, create a copy of each relevant subgraph, wrap it in a module, apply the quantization API to that module, and hook up loggers to measure the comparisons. Example starting graph: x0 -> op0 -> x1 -> op1 -> x2 Example config: quantize op0 to int8, do nothing to op1. The following graph will be created: .. code:: x0_0 -> op0_0 -> x1_0 -> log -----> op1_0 -> x2_0 -> log \ \ \ # noqa: W605 ---> op0_1 -> x1_1 ----> clog -> op1_0 -> x2_1 ----> clog Where op0_0 is op0, op0_1 is op0 wrapped in a submodule and quantized to int8, op1_0 is op1 (appearing in the graph twice), log is a logger, and clog is a comparison logger. """ tracer = quantize_fx.QuantizationTracer([], []) mt = torch.fx.GraphModule(model, tracer.trace(model)) # this is necessary to ensure logger FQNs get populated mt._node_name_to_scope = tracer.node_name_to_scope # type: ignore[assignment] # run example input propagation, we need this to call prepare_fx on # individual subgraphs output_prop = OutputProp(mt) output_prop.propagate(*example_inputs) # Find the set of subgraphs in the original graph which we need to # consider. modules = dict(mt.named_modules(remove_duplicate=False)) patterns = _get_pattern_to_quantize_handlers(backend_config) root_node_getter_mapping = get_fusion_pattern_to_root_node_getter(backend_config) standalone_module_names: List[str] = [] standalone_module_classes: List[Type] = [] custom_module_classes: List[Type] = [] matches = _find_matches( mt.graph, modules, patterns, root_node_getter_mapping, standalone_module_names, standalone_module_classes, custom_module_classes, ) subgraphs_dedup: Dict[str, List[Node]] = _get_dedup_subgraphs(matches) # generate node to qconfig for each subgraph node_name_to_qconfig = _generate_node_name_to_qconfig( mt, modules, mt.graph, qconfig_mapping, tracer.node_name_to_scope ) # Now, mutate the graph to be the add_loggers graph with propagation # error. create_add_loggers_graph(mt, subgraphs_dedup, qconfig_mapping, node_name_to_qconfig) return mt # TODO(future PR): we should rethink the names of all the PNP APIs def _n_shadows_compare_weights( model: torch.nn.Module, example_inputs: Any, qconfig_mapping: QConfigMapping, backend_config: BackendConfig, ) -> NSResultsType: """ Note: this API is not recommended for wide usage, it is only provided for customers who need to migrate from the `add_loggers` API. """ qconfig_multi_mapping = QConfigMultiMapping.from_list_qconfig_mapping( [qconfig_mapping] ) mp = prepare_n_shadows_model( model, example_inputs, qconfig_multi_mapping, backend_config ) # passing inputs through the model is necessary to populate # observers which observe weights with real values mp(*example_inputs) mq = convert_n_shadows_model(mp) weight_comparison = extract_weight_comparison(mq) return weight_comparison # TODO(future PR): consider aligning API signature with other similar quantization # functions (enable_fake_quant, etc)
[docs]def loggers_set_enabled(model: torch.nn.Module, enabled: bool) -> None: """ Sets the `enabled` setting on a `model`'s loggers """ for name, child in model.named_modules(): if isinstance(child, OutputLogger): child.enabled = enabled
# TODO(future PR): consider aligning API signature with other similar quantization # functions (enable_fake_quant, etc)
[docs]def loggers_set_save_activations( model: torch.nn.Module, save_activations: bool, ) -> None: """ Sets the `save_activations` setting on a `model`'s loggers """ for name, child in model.named_modules(): if isinstance(child, OutputLogger): child.save_activations = save_activations
[docs]def convert_n_shadows_model( model: GraphModule, custom_convert_fn: Optional[Callable] = None, custom_convert_kwargs: Optional[Dict[str, Any]] = None, ) -> GraphModule: """ Given a model from `prepare_n_shadows_model`, runs `convert_fx` on each shadow submodule. """ for node in model.graph.nodes: # TODO(future PR): consider matching in a safer way than # node name string match if node.name.startswith(SHADOW_WRAPPER_NODE_NAME_PREFIX): orig_mod = getattr(model, node.name) if custom_convert_fn is None: converted_mod = torch.ao.quantization.quantize_fx.convert_fx(orig_mod) else: if custom_convert_kwargs is None: custom_convert_kwargs = {} converted_mod = custom_convert_fn(orig_mod, **custom_convert_kwargs) setattr(model, node.name, converted_mod) return model
[docs]def extract_results_n_shadows_model(model: torch.nn.Module) -> NSResultsType: """ Extracts logger results from `model`. """ results: NSResultsType = {} _extract_logger_info_one_model(model, results, OutputLogger) return results

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources