Shortcuts

Source code for torch.distributed.tensor.parallel.api

# Copyright (c) Meta Platforms, Inc. and affiliates
from typing import Dict, Union
from fnmatch import fnmatch

import torch
import torch.distributed._tensor.random as random
import torch.nn as nn
from torch.distributed._tensor import (
    DeviceMesh,
)
from torch.distributed._tensor.random import (
    is_rng_supported_mesh,
    TensorParallelRNGTracker,
)
from torch.distributed.tensor.parallel._utils import _validate_tp_mesh_dim
from torch.distributed.tensor.parallel.style import (
    ParallelStyle,
)


__all__ = [
    "parallelize_module",
]


[docs]def parallelize_module( # type: ignore[return] module: nn.Module, device_mesh: DeviceMesh, parallelize_plan: Union[ParallelStyle, Dict[str, ParallelStyle]], ) -> nn.Module: """ Apply Tensor Parallelism in PyTorch by parallelizing modules or sub-modules based on a user-specified plan. We parallelize module or sub_modules based on a parallelize_plan. The parallelize_plan contains :class:`ParallelStyle`, which indicates how user wants the module or sub_module to be parallelized. User can also specify different parallel style per module fully qualified name (FQN). Note that ``parallelize_module`` only accepts a 1-D :class:`DeviceMesh`, if you have a 2-D or N-D :class:`DeviceMesh`, slice the DeviceMesh to a 1-D sub DeviceMesh first then pass to this API(i.e. ``device_mesh[\"tp\"]``) Args: module (:class:`nn.Module`): Module to be parallelized. device_mesh (:class:`DeviceMesh`): Object which describes the mesh topology of devices for the DTensor. parallelize_plan (Union[:class:`ParallelStyle`, Dict[str, :class:`ParallelStyle`]]): The plan used to parallelize the module. It can be either a :class:`ParallelStyle` object which contains how we prepare input/output for Tensor Parallelism or it can be a dict of module FQN and its corresponding :class:`ParallelStyle` object. Return: A :class:`nn.Module` object parallelized. Example:: >>> # xdoctest: +SKIP("distributed") >>> from torch.distributed.tensor.parallel import parallelize_module, ColwiseParallel >>> from torch.distributed.device_mesh import init_device_mesh >>> >>> # Define the module. >>> m = Model(...) >>> tp_mesh = init_device_mesh("cuda", (8,)) >>> m = parallelize_module(m, tp_mesh, {"w1": ColwiseParallel(), "w2": RowwiseParallel()}) >>> .. note:: For complex module architecture like Attention, MLP layers, we recommend composing different ParallelStyles together (i.e. ``ColwiseParallel`` and ``RowwiseParallel``) and pass as a parallelize_plan, to achieves the desired sharding computation. """ torch._C._log_api_usage_once("torch.distributed.tensor.parallel.parallelize_module") _validate_tp_mesh_dim(device_mesh) # instantiate a TP RNG state tracker if it's not there if is_rng_supported_mesh(device_mesh) and not isinstance( random._rng_tracker, TensorParallelRNGTracker ): random._rng_tracker = TensorParallelRNGTracker(device_mesh.device_type) # TODO: we should allow user to pass in the default seed from a config random._rng_tracker._manual_seed(device_mesh, base_seed=1234) # By default we execute random ops in non-tensor-parallel region. If users want # to execute in tensor-parallel region, they can manually set this field to True # after parallelizing the model. random._rng_tracker.distribute_region_enabled = False if isinstance(parallelize_plan, ParallelStyle): return parallelize_plan._apply(module, device_mesh) elif isinstance(parallelize_plan, dict): for module_path, parallelize_style in parallelize_plan.items(): path_splits = module_path.split(".") if len(path_splits) == 0: raise ValueError( "Expect module path to be non-empty, but got empty string!" ) while path_splits: atom = path_splits.pop(0) matched_children = filter( # `t[0]` is child name lambda t: fnmatch(t[0], atom), module.named_children() ) # apply the plan to all matched submodules for _, submodule in matched_children: if path_splits: # we haven't reached the leaf, apply in dict style leaf_path = ".".join(path_splits) # rest of the path after `atom` parallelize_module(submodule, device_mesh, {leaf_path: parallelize_style}) else: # otherwise, directly apply style to this submodule parallelize_module(submodule, device_mesh, parallelize_style) return module else: raise TypeError( # pyre-ignore[7] "Expect Union[ParallelStyle, Dict[str, ParallelStyle]] for" f" parallelize_plan, {type(parallelize_plan)} found!" )

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources