Source code for torch.distributed
# mypy: allow-untyped-defs
import os
import sys
from enum import Enum
import pdb
import io
import torch
[docs]def is_available() -> bool:
"""
Return ``True`` if the distributed package is available.
Otherwise,
``torch.distributed`` does not expose any other APIs. Currently,
``torch.distributed`` is available on Linux, MacOS and Windows. Set
``USE_DISTRIBUTED=1`` to enable it when building PyTorch from source.
Currently, the default value is ``USE_DISTRIBUTED=1`` for Linux and Windows,
``USE_DISTRIBUTED=0`` for MacOS.
"""
return hasattr(torch._C, "_c10d_init")
if is_available() and not torch._C._c10d_init():
raise RuntimeError("Failed to initialize torch.distributed")
# Custom Runtime Errors thrown from the distributed package
DistError = torch._C._DistError
DistBackendError = torch._C._DistBackendError
DistNetworkError = torch._C._DistNetworkError
DistStoreError = torch._C._DistStoreError
if is_available():
from torch._C._distributed_c10d import (
Store,
FileStore,
TCPStore,
ProcessGroup as ProcessGroup,
Backend as _Backend,
PrefixStore,
Reducer,
Logger,
BuiltinCommHookType,
GradBucket,
Work as _Work,
_DEFAULT_FIRST_BUCKET_BYTES,
_register_comm_hook,
_register_builtin_comm_hook,
_broadcast_coalesced,
_compute_bucket_assignment_by_size,
_verify_params_across_processes,
_test_python_store,
DebugLevel,
get_debug_level,
set_debug_level,
set_debug_level_from_env,
_make_nccl_premul_sum,
_ControlCollectives,
_StoreCollectives,
)
class _DistributedPdb(pdb.Pdb):
"""
Supports using PDB from inside a multiprocessing child process.
Usage:
_DistributedPdb().set_trace()
"""
def interaction(self, *args, **kwargs):
_stdin = sys.stdin
try:
sys.stdin = open('/dev/stdin')
pdb.Pdb.interaction(self, *args, **kwargs)
finally:
sys.stdin = _stdin
[docs] def breakpoint(rank: int = 0):
"""
Set a breakpoint, but only on a single rank. All other ranks will wait for you to be
done with the breakpoint before continuing.
Args:
rank (int): Which rank to break on. Default: ``0``
"""
if get_rank() == rank:
pdb = _DistributedPdb()
pdb.message(
"\n!!! ATTENTION !!!\n\n"
f"Type 'up' to get to the frame that called dist.breakpoint(rank={rank})\n"
)
pdb.set_trace()
# If Meta/Python keys are in the TLS, we want to make sure that we ignore them
# and hit the (default) CPU/CUDA implementation of barrier.
meta_in_tls = torch._C._meta_in_tls_dispatch_include()
guard = torch._C._DisableTorchDispatch() # type: ignore[attr-defined]
torch._C._set_meta_in_tls_dispatch_include(False)
try:
barrier()
finally:
torch._C._set_meta_in_tls_dispatch_include(meta_in_tls)
del guard
if sys.platform != "win32":
from torch._C._distributed_c10d import (
HashStore,
_round_robin_process_groups,
)
from .distributed_c10d import * # noqa: F403
# Variables prefixed with underscore are not auto imported
# See the comment in `distributed_c10d.py` above `_backend` on why we expose
# this.
from .distributed_c10d import (
_all_gather_base,
_reduce_scatter_base,
_create_process_group_wrapper,
_rank_not_in_group,
_coalescing_manager,
_CoalescingManager,
_get_process_group_name,
get_node_local_rank,
)
from .rendezvous import (
rendezvous,
_create_store_from_options,
register_rendezvous_handler,
)
from .remote_device import _remote_device
from .device_mesh import init_device_mesh, DeviceMesh
set_debug_level_from_env()
else:
# This stub is sufficient to get
# python test/test_public_bindings.py -k test_correct_module_names
# working even when USE_DISTRIBUTED=0. Feel free to add more
# stubs as necessary.
# We cannot define stubs directly because they confuse pyre
class _ProcessGroupStub:
pass
sys.modules["torch.distributed"].ProcessGroup = _ProcessGroupStub # type: ignore[attr-defined]