Struct SoftMarginLossImpl¶
Defined in File loss.h
Page Contents
Inheritance Relationships¶
Base Type¶
public torch::nn::Cloneable< SoftMarginLossImpl >
(Template Class Cloneable)
Struct Documentation¶
-
struct SoftMarginLossImpl : public torch::nn::Cloneable<SoftMarginLossImpl>¶
Creates a criterion that optimizes a two-class classification logistic loss between input tensor :math:
x
and target tensor :math:y
(containing 1 or -1).See https://pytorch.org/docs/main/nn.html#torch.nn.SoftMarginLoss to learn about the exact behavior of this module.
See the documentation for
torch::nn::SoftMarginLossOptions
class to learn what constructor arguments are supported for this module.Example:
SoftMarginLoss model(SoftMarginLossOptions(torch::kNone));
Public Functions
-
explicit SoftMarginLossImpl(SoftMarginLossOptions options_ = {})¶
-
virtual void pretty_print(std::ostream &stream) const override¶
Pretty prints the
SoftMarginLoss
module into the givenstream
.
-
virtual void reset() override¶
reset()
must perform initialization of all members with reference semantics, most importantly parameters, buffers and submodules.
-
Tensor forward(const Tensor &input, const Tensor &target)¶
Public Members
-
SoftMarginLossOptions options¶
The options with which this
Module
was constructed.
-
explicit SoftMarginLossImpl(SoftMarginLossOptions options_ = {})¶