Struct AdaptiveLogSoftmaxWithLossOptions¶
Defined in File adaptive.h
Page Contents
Struct Documentation¶
-
struct AdaptiveLogSoftmaxWithLossOptions¶
Options for the
AdaptiveLogSoftmaxWithLoss
module.Example:
AdaptiveLogSoftmaxWithLoss model(AdaptiveLogSoftmaxWithLossOptions(8, 10, {4, 8}).div_value(2.).head_bias(true));
Public Functions
-
AdaptiveLogSoftmaxWithLossOptions(int64_t in_features, int64_t n_classes, std::vector<int64_t> cutoffs)¶
-
inline auto in_features(const int64_t &new_in_features) -> decltype(*this)¶
Number of features in the input tensor.
-
inline auto in_features(int64_t &&new_in_features) -> decltype(*this)¶
-
inline const int64_t &in_features() const noexcept¶
-
inline int64_t &in_features() noexcept¶
-
inline auto n_classes(const int64_t &new_n_classes) -> decltype(*this)¶
Number of classes in the dataset.
-
inline auto n_classes(int64_t &&new_n_classes) -> decltype(*this)¶
-
inline const int64_t &n_classes() const noexcept¶
-
inline int64_t &n_classes() noexcept¶
-
inline auto cutoffs(const std::vector<int64_t> &new_cutoffs) -> decltype(*this)¶
Cutoffs used to assign targets to their buckets.
-
inline auto cutoffs(std::vector<int64_t> &&new_cutoffs) -> decltype(*this)¶
-
inline const std::vector<int64_t> &cutoffs() const noexcept¶
-
inline std::vector<int64_t> &cutoffs() noexcept¶
-
inline auto div_value(const double &new_div_value) -> decltype(*this)¶
value used as an exponent to compute sizes of the clusters. Default: 4.0
-
inline auto div_value(double &&new_div_value) -> decltype(*this)¶
-
inline const double &div_value() const noexcept¶
-
inline double &div_value() noexcept¶
-
inline auto head_bias(const bool &new_head_bias) -> decltype(*this)¶
If
true
, adds a bias term to the ‘head’ of the adaptive softmax.Default: false
-
inline auto head_bias(bool &&new_head_bias) -> decltype(*this)¶
-
inline const bool &head_bias() const noexcept¶
-
inline bool &head_bias() noexcept¶
-
AdaptiveLogSoftmaxWithLossOptions(int64_t in_features, int64_t n_classes, std::vector<int64_t> cutoffs)¶