Program Listing for File TensorShape.h¶
↰ Return to documentation for file (aten/src/ATen/native/TensorShape.h
)
#pragma once
#include <ATen/core/IListRef.h>
#include <ATen/core/Tensor.h>
#include <c10/util/irange.h>
namespace at::native {
TORCH_API at::Tensor clone_preserve_strides(const at::Tensor& self);
inline bool cat_should_skip_tensor(const Tensor& t) {
return t.sym_numel() == 0 && t.dim() == 1;
}
// Check to see if the shape of tensors is compatible
// for being concatenated along a given dimension.
inline void check_cat_shape_except_dim(
const Tensor& first,
const Tensor& second,
int64_t dimension,
int64_t index) {
int64_t first_dims = first.dim();
int64_t second_dims = second.dim();
TORCH_CHECK(
first_dims == second_dims,
"Tensors must have same number of dimensions: got ",
first_dims,
" and ",
second_dims);
for (const auto dim : c10::irange(first_dims)) {
if (dim == dimension) {
continue;
}
int64_t first_dim_size = first.sizes()[dim];
int64_t second_dim_size = second.sizes()[dim];
TORCH_CHECK(
first_dim_size == second_dim_size,
"Sizes of tensors must match except in dimension ",
dimension,
". Expected size ",
static_cast<long long>(first_dim_size),
" but got size ",
static_cast<long long>(second_dim_size),
" for tensor number ",
index,
" in the list.");
}
}
inline void check_cat_no_zero_dim(const MaterializedITensorListRef& tensors) {
[[maybe_unused]] int64_t i = 0;
for (const Tensor& t : tensors) {
TORCH_CHECK(
t.dim() > 0,
"zero-dimensional tensor (at position ",
i,
") cannot be concatenated");
i++;
}
}
inline int64_t get_num_splits(
const Tensor& self,
int64_t split_size,
int64_t dim) {
TORCH_CHECK(self.dim() != 0, "split expects at least a 1-dimensional tensor");
TORCH_CHECK(
split_size >= 0,
"split expects split_size be non-negative, but got split_size=",
split_size);
int64_t dim_size = self.size(dim);
TORCH_CHECK(
split_size > 0 || dim_size == 0,
"split_size can only be 0 if dimension size is 0, "
"but got dimension size of ",
dim_size);
// if split_size is 0 and dimension size is 0, there is 1 split.
int64_t num_splits = 1;
if (split_size != 0) {
// ensuring num_splits is at least 1 makes consistent the case where
// split_size > dim_size (returns a single split). We might want to error
// here, but keep it for BC.
num_splits = std::max<int64_t>((dim_size + split_size - 1) / split_size, 1);
}
return num_splits;
}
inline bool have_same_ndims(TensorList tensors) {
auto ndim = tensors[0].dim();
for (const auto tensor_idx : c10::irange(tensors.size())) {
if (tensors[tensor_idx].dim() != ndim) {
return false;
}
}
return true;
}
inline void leading_dimension_matches(TensorList tensors, int64_t dim) {
auto tensor_zero_size = tensors[0].sizes();
std::vector<c10::SymInt> leading_dim_sizes(
tensor_zero_size.begin(), tensor_zero_size.begin() + dim);
for (const auto i : c10::irange(tensors.size())) {
at::Tensor tensor = tensors[i];
for (const auto j : c10::irange(dim)) {
TORCH_CHECK(
tensor.size(j) == leading_dim_sizes[j],
"_chunk_cat expects same sizes of 0,...,dim-1 dimensions for all tensors");
}
}
}
inline int64_t preprocess_chunk_cat_inputs(
TensorList tensors,
int64_t dim,
int64_t num_chunks) {
TORCH_CHECK(num_chunks >= 1, "_chunk_cat expects positive num_chunks");
TORCH_CHECK(
!tensors.empty(), "_chunk_cat expects a non-empty input tensor list");
auto expected_dtype = tensors[0].dtype();
auto expected_device = tensors[0].device();
for (const auto i : c10::irange(tensors.size())) {
TORCH_CHECK(tensors[i].numel() > 0, "_chunk_cat expects non-empty tensor");
TORCH_CHECK(
tensors[i].dtype() == expected_dtype,
"_chunk_cat expects all input tensors with the same dtype");
TORCH_CHECK(
tensors[i].device() == expected_device,
"_chunk_cat expects all inputs tensors on the same device");
}
if (have_same_ndims(tensors)) {
dim = maybe_wrap_dim(dim, tensors[0].dim());
} else {
TORCH_CHECK(
dim >= 0,
"_chunk_cat expects non-negative dim when input tensors have different ndims")
for (const auto i : c10::irange(tensors.size())) {
TORCH_CHECK(
dim < tensors[i].ndimension(),
"_chunk_cat expects dim < ndim for all input tensors");
}
}
leading_dimension_matches(tensors, dim);
return dim;
}
} // namespace at::native