Shortcuts

Class MultiheadAttentionImpl

Inheritance Relationships

Base Type

Class Documentation

class MultiheadAttentionImpl : public torch::nn::Cloneable<MultiheadAttentionImpl>

Applies the MultiheadAttention function element-wise.

See https://pytorch.org/docs/main/nn.html#torch.nn.MultiheadAttention to learn about the exact behavior of this module.

See the documentation for torch::nn::MultiheadAttentionOptions class to learn what constructor arguments are supported for this module.

Example:

MultiheadAttention model(MultiheadAttentionOptions(20, 10).bias(false));

Public Functions

inline MultiheadAttentionImpl(int64_t embed_dim, int64_t num_heads)
explicit MultiheadAttentionImpl(const MultiheadAttentionOptions &options_)
std::tuple<Tensor, Tensor> forward(const Tensor &query, const Tensor &key, const Tensor &value, const Tensor &key_padding_mask = {}, bool need_weights = true, const Tensor &attn_mask = {}, bool average_attn_weights = true)
virtual void reset() override

reset() must perform initialization of all members with reference semantics, most importantly parameters, buffers and submodules.

void _reset_parameters()

Public Members

MultiheadAttentionOptions options

The options with which this Module was constructed.

bool _qkv_same_embed_dim = {}
Tensor in_proj_weight
Tensor in_proj_bias
Tensor bias_k
Tensor bias_v
Linear out_proj = nullptr
Tensor q_proj_weight
Tensor k_proj_weight
Tensor v_proj_weight
int64_t head_dim = {}

Protected Functions

inline virtual bool _forward_has_default_args() override

The following three functions allow a module with default arguments in its forward method to be used in a Sequential module.

You should NEVER override these functions manually. Instead, you should use the FORWARD_HAS_DEFAULT_ARGS macro.

inline virtual unsigned int _forward_num_required_args() override
inline std::vector<torch::nn::AnyValue> _forward_populate_default_args(std::vector<torch::nn::AnyValue> &&arguments) override

Friends

friend struct torch::nn::AnyModuleHolder

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources