Class LayerNormImpl#
Defined in File normalization.h
Page Contents
Inheritance Relationships#
Base Type#
public torch::nn::Cloneable< LayerNormImpl >
(Template Class Cloneable)
Class Documentation#
-
class LayerNormImpl : public torch::nn::Cloneable<LayerNormImpl>#
Applies Layer Normalization over a mini-batch of inputs as described in the paper
Layer Normalization
_ .See https://pytorch.org/docs/main/nn.html#torch.nn.LayerNorm to learn about the exact behavior of this module.
See the documentation for
torch::nn::LayerNormOptions
class to learn what constructor arguments are supported for this module.Example:
LayerNorm model(LayerNormOptions({2, 2}).elementwise_affine(false).eps(2e-5));
Public Functions
-
inline LayerNormImpl(std::vector<int64_t> normalized_shape)#
-
explicit LayerNormImpl(LayerNormOptions options_)#
-
virtual void reset() override#
reset()
must perform initialization of all members with reference semantics, most importantly parameters, buffers and submodules.
-
void reset_parameters()#
-
virtual void pretty_print(std::ostream &stream) const override#
Pretty prints the
LayerNorm
module into the givenstream
.
-
Tensor forward(const Tensor &input)#
Applies layer normalization over a mini-batch of inputs as described in the paper
Layer Normalization
_ .The mean and standard-deviation are calculated separately over the last certain number dimensions which have to be of the shape specified by input
normalized_shape
.Layer Normalization
: https://arxiv.org/abs/1607.06450
Public Members
-
LayerNormOptions options#
The options with which this module was constructed.
-
Tensor weight#
The learned weight.
Initialized to ones if the
elementwise_affine
option is set totrue
upon construction.
-
Tensor bias#
The learned bias.
Initialized to zeros
elementwise_affine
option is set totrue
upon construction.
-
inline LayerNormImpl(std::vector<int64_t> normalized_shape)#