BarkScale¶
- class torchaudio.prototype.transforms.BarkScale(n_barks: int = 128, sample_rate: int = 16000, f_min: float = 0.0, f_max: Optional[float] = None, n_stft: int = 201, bark_scale: str = 'traunmuller')[source]¶
Turn a normal STFT into a bark frequency STFT with triangular filter banks.
- Parameters:
n_barks (int, optional) – Number of bark filterbanks. (Default:
128
)sample_rate (int, optional) – Sample rate of audio signal. (Default:
16000
)f_min (float, optional) – Minimum frequency. (Default:
0.
)f_max (float or None, optional) – Maximum frequency. (Default:
sample_rate // 2
)n_stft (int, optional) – Number of bins in STFT. See
n_fft
inSpectrogram
. (Default:201
)norm (str or None, optional) – If
"slaney"
, divide the triangular bark weights by the width of the bark band (area normalization). (Default:None
)bark_scale (str, optional) – Scale to use:
traunmuller
,schroeder
orwang
. (Default:traunmuller
)
- Example
>>> waveform, sample_rate = torchaudio.load("test.wav", normalize=True) >>> spectrogram_transform = transforms.Spectrogram(n_fft=1024) >>> spectrogram = spectrogram_transform(waveform) >>> barkscale_transform = transforms.BarkScale(sample_rate=sample_rate, n_stft=1024 // 2 + 1) >>> barkscale_spectrogram = barkscale_transform(spectrogram)
See also
torchaudio.prototype.functional.barkscale_fbanks()
- The function used to generate the filter banks.- forward(specgram: Tensor) Tensor [source]¶
- Parameters:
specgram (torch.Tensor) – A spectrogram STFT of dimension (…, freq, time).
- Returns:
Bark frequency spectrogram of size (…,
n_barks
, time).- Return type: