cuda_ctc_decoder¶
- torchaudio.models.decoder.cuda_ctc_decoder(tokens: Union[str, List[str]], nbest: int = 1, beam_size: int = 10, blank_skip_threshold: float = 0.95) CUCTCDecoder [source]¶
Builds an instance of
CUCTCDecoder
.- Parameters:
tokens (str or List[str]) – File or list containing valid tokens. If using a file, the expected format is for tokens mapping to the same index to be on the same line
beam_size (int, optional) – The maximum number of hypos to hold after each decode step (Default: 10)
nbest (int) – The number of best decodings to return
blank_id (int) – The token ID corresopnding to the blank symbol.
blank_skip_threshold (float) – skip frames if log_prob(blank) > log(blank_skip_threshold), to speed up decoding (Default: 0.95).
- Returns:
decoder
- Return type:
- Example
>>> decoder = cuda_ctc_decoder( >>> vocab_file="tokens.txt", >>> blank_skip_threshold=0.95, >>> ) >>> results = decoder(log_probs, encoder_out_lens) # List of shape (B, nbest) of Hypotheses
- Tutorials using
cuda_ctc_decoder
: ASR Inference with CUDA CTC Decoder
ASR Inference with CUDA CTC Decoder