Source code for torchaudio.transforms._multi_channel
# -*- coding: utf-8 -*-
import warnings
from typing import Optional, Union
import torch
from torch import Tensor
from torchaudio import functional as F
__all__ = []
def _get_mvdr_vector(
psd_s: torch.Tensor,
psd_n: torch.Tensor,
reference_vector: torch.Tensor,
solution: str = "ref_channel",
diagonal_loading: bool = True,
diag_eps: float = 1e-7,
eps: float = 1e-8,
) -> torch.Tensor:
r"""Compute the MVDR beamforming weights with ``solution`` argument.
Args:
psd_s (torch.Tensor): The complex-valued power spectral density (PSD) matrix of target speech.
Tensor with dimensions `(..., freq, channel, channel)`.
psd_n (torch.Tensor): The complex-valued power spectral density (PSD) matrix of noise.
Tensor with dimensions `(..., freq, channel, channel)`.
reference_vector (torch.Tensor): one-hot reference channel matrix.
solution (str, optional): Solution to compute the MVDR beamforming weights.
Options: [``ref_channel``, ``stv_evd``, ``stv_power``]. (Default: ``ref_channel``)
diagonal_loading (bool, optional): If ``True``, enables applying diagonal loading to ``psd_n``.
(Default: ``True``)
diag_eps (float, optional): The coefficient multiplied to the identity matrix for diagonal loading.
It is only effective when ``diagonal_loading`` is set to ``True``. (Default: ``1e-7``)
eps (float, optional): Value to add to the denominator in the beamforming weight formula.
(Default: ``1e-8``)
Returns:
torch.Tensor: the mvdr beamforming weight matrix
"""
if solution == "ref_channel":
beamform_vector = F.mvdr_weights_souden(psd_s, psd_n, reference_vector, diagonal_loading, diag_eps, eps)
else:
if solution == "stv_evd":
stv = F.rtf_evd(psd_s)
else:
stv = F.rtf_power(psd_s, psd_n, reference_vector, diagonal_loading=diagonal_loading, diag_eps=diag_eps)
beamform_vector = F.mvdr_weights_rtf(stv, psd_n, reference_vector, diagonal_loading, diag_eps, eps)
return beamform_vector
[docs]class PSD(torch.nn.Module):
r"""Compute cross-channel power spectral density (PSD) matrix.
.. devices:: CPU CUDA
.. properties:: Autograd TorchScript
Args:
multi_mask (bool, optional): If ``True``, only accepts multi-channel Time-Frequency masks. (Default: ``False``)
normalize (bool, optional): If ``True``, normalize the mask along the time dimension. (Default: ``True``)
eps (float, optional): Value to add to the denominator in mask normalization. (Default: ``1e-15``)
"""
def __init__(self, multi_mask: bool = False, normalize: bool = True, eps: float = 1e-15):
super().__init__()
self.multi_mask = multi_mask
self.normalize = normalize
self.eps = eps
[docs] def forward(self, specgram: torch.Tensor, mask: Optional[torch.Tensor] = None):
"""
Args:
specgram (torch.Tensor): Multi-channel complex-valued spectrum.
Tensor with dimensions `(..., channel, freq, time)`.
mask (torch.Tensor or None, optional): Time-Frequency mask for normalization.
Tensor with dimensions `(..., freq, time)` if multi_mask is ``False`` or
with dimensions `(..., channel, freq, time)` if multi_mask is ``True``.
(Default: ``None``)
Returns:
torch.Tensor: The complex-valued PSD matrix of the input spectrum.
Tensor with dimensions `(..., freq, channel, channel)`
"""
if mask is not None:
if self.multi_mask:
# Averaging mask along channel dimension
mask = mask.mean(dim=-3) # (..., freq, time)
psd = F.psd(specgram, mask, self.normalize, self.eps)
return psd
[docs]class MVDR(torch.nn.Module):
"""Minimum Variance Distortionless Response (MVDR) module that performs MVDR beamforming with Time-Frequency masks.
.. devices:: CPU CUDA
.. properties:: Autograd TorchScript
Based on https://github.com/espnet/espnet/blob/master/espnet2/enh/layers/beamformer.py
We provide three solutions of MVDR beamforming. One is based on *reference channel selection*
:cite:`souden2009optimal` (``solution=ref_channel``).
.. math::
\\textbf{w}_{\\text{MVDR}}(f) =\
\\frac{{{\\bf{\\Phi}_{\\textbf{NN}}^{-1}}(f){\\bf{\\Phi}_{\\textbf{SS}}}}(f)}\
{\\text{Trace}({{{\\bf{\\Phi}_{\\textbf{NN}}^{-1}}(f) \\bf{\\Phi}_{\\textbf{SS}}}(f))}}\\bm{u}
where :math:`\\bf{\\Phi}_{\\textbf{SS}}` and :math:`\\bf{\\Phi}_{\\textbf{NN}}` are the covariance\
matrices of speech and noise, respectively. :math:`\\bf{u}` is an one-hot vector to determine the\
reference channel.
The other two solutions are based on the steering vector (``solution=stv_evd`` or ``solution=stv_power``).
.. math::
\\textbf{w}_{\\text{MVDR}}(f) =\
\\frac{{{\\bf{\\Phi}_{\\textbf{NN}}^{-1}}(f){\\bm{v}}(f)}}\
{{\\bm{v}^{\\mathsf{H}}}(f){\\bf{\\Phi}_{\\textbf{NN}}^{-1}}(f){\\bm{v}}(f)}
where :math:`\\bm{v}` is the acoustic transfer function or the steering vector.\
:math:`.^{\\mathsf{H}}` denotes the Hermitian Conjugate operation.
We apply either *eigenvalue decomposition*
:cite:`higuchi2016robust` or the *power method* :cite:`mises1929praktische` to get the
steering vector from the PSD matrix of speech.
After estimating the beamforming weight, the enhanced Short-time Fourier Transform (STFT) is obtained by
.. math::
\\hat{\\bf{S}} = {\\bf{w}^\\mathsf{H}}{\\bf{Y}}, {\\bf{w}} \\in \\mathbb{C}^{M \\times F}
where :math:`\\bf{Y}` and :math:`\\hat{\\bf{S}}` are the STFT of the multi-channel noisy speech and\
the single-channel enhanced speech, respectively.
For online streaming audio, we provide a *recursive method* :cite:`higuchi2017online` to update the
PSD matrices of speech and noise, respectively.
Args:
ref_channel (int, optional): Reference channel for beamforming. (Default: ``0``)
solution (str, optional): Solution to compute the MVDR beamforming weights.
Options: [``ref_channel``, ``stv_evd``, ``stv_power``]. (Default: ``ref_channel``)
multi_mask (bool, optional): If ``True``, only accepts multi-channel Time-Frequency masks. (Default: ``False``)
diagonal_loading (bool, optional): If ``True``, enables applying diagonal loading to the covariance matrix
of the noise. (Default: ``True``)
diag_eps (float, optional): The coefficient multiplied to the identity matrix for diagonal loading.
It is only effective when ``diagonal_loading`` is set to ``True``. (Default: ``1e-7``)
online (bool, optional): If ``True``, updates the MVDR beamforming weights based on
the previous covarience matrices. (Default: ``False``)
Note:
To improve the numerical stability, the input spectrogram will be converted to double precision
(``torch.complex128`` or ``torch.cdouble``) dtype for internal computation. The output spectrogram
is converted to the dtype of the input spectrogram to be compatible with other modules.
Note:
If you use ``stv_evd`` solution, the gradient of the same input may not be identical if the
eigenvalues of the PSD matrix are not distinct (i.e. some eigenvalues are close or identical).
"""
def __init__(
self,
ref_channel: int = 0,
solution: str = "ref_channel",
multi_mask: bool = False,
diag_loading: bool = True,
diag_eps: float = 1e-7,
online: bool = False,
):
super().__init__()
if solution not in [
"ref_channel",
"stv_evd",
"stv_power",
]:
raise ValueError(
'`solution` must be one of ["ref_channel", "stv_evd", "stv_power"]. Given {}'.format(solution)
)
self.ref_channel = ref_channel
self.solution = solution
self.multi_mask = multi_mask
self.diag_loading = diag_loading
self.diag_eps = diag_eps
self.online = online
self.psd = PSD(multi_mask)
psd_s: torch.Tensor = torch.zeros(1)
psd_n: torch.Tensor = torch.zeros(1)
mask_sum_s: torch.Tensor = torch.zeros(1)
mask_sum_n: torch.Tensor = torch.zeros(1)
self.register_buffer("psd_s", psd_s)
self.register_buffer("psd_n", psd_n)
self.register_buffer("mask_sum_s", mask_sum_s)
self.register_buffer("mask_sum_n", mask_sum_n)
def _get_updated_mvdr_vector(
self,
psd_s: torch.Tensor,
psd_n: torch.Tensor,
mask_s: torch.Tensor,
mask_n: torch.Tensor,
reference_vector: torch.Tensor,
solution: str = "ref_channel",
diagonal_loading: bool = True,
diag_eps: float = 1e-7,
eps: float = 1e-8,
) -> torch.Tensor:
r"""Recursively update the MVDR beamforming vector.
Args:
psd_s (torch.Tensor): The complex-valued power spectral density (PSD) matrix of target speech.
Tensor with dimensions `(..., freq, channel, channel)`.
psd_n (torch.Tensor): The complex-valued power spectral density (PSD) matrix of noise.
Tensor with dimensions `(..., freq, channel, channel)`.
mask_s (torch.Tensor): Time-Frequency mask of the target speech.
Tensor with dimensions `(..., freq, time)` if multi_mask is ``False``
or with dimensions `(..., channel, freq, time)` if multi_mask is ``True``.
mask_n (torch.Tensor or None, optional): Time-Frequency mask of the noise.
Tensor with dimensions `(..., freq, time)` if multi_mask is ``False``
or with dimensions `(..., channel, freq, time)` if multi_mask is ``True``.
reference_vector (torch.Tensor): One-hot reference channel matrix.
solution (str, optional): Solution to compute the MVDR beamforming weights.
Options: [``ref_channel``, ``stv_evd``, ``stv_power``]. (Default: ``ref_channel``)
diagonal_loading (bool, optional): If ``True``, enables applying diagonal loading to ``psd_n``.
(Default: ``True``)
diag_eps (float, optional): The coefficient multiplied to the identity matrix for diagonal loading.
It is only effective when ``diagonal_loading`` is set to ``True``. (Default: ``1e-7``)
eps (float, optional): Value to add to the denominator in the beamforming weight formula.
(Default: ``1e-8``)
Returns:
torch.Tensor: The MVDR beamforming weight matrix.
"""
if self.multi_mask:
# Averaging mask along channel dimension
mask_s = mask_s.mean(dim=-3) # (..., freq, time)
mask_n = mask_n.mean(dim=-3) # (..., freq, time)
if self.psd_s.ndim == 1:
self.psd_s = psd_s
self.psd_n = psd_n
self.mask_sum_s = mask_s.sum(dim=-1)
self.mask_sum_n = mask_n.sum(dim=-1)
return _get_mvdr_vector(psd_s, psd_n, reference_vector, solution, diagonal_loading, diag_eps, eps)
else:
psd_s = self._get_updated_psd_speech(psd_s, mask_s)
psd_n = self._get_updated_psd_noise(psd_n, mask_n)
self.psd_s = psd_s
self.psd_n = psd_n
self.mask_sum_s = self.mask_sum_s + mask_s.sum(dim=-1)
self.mask_sum_n = self.mask_sum_n + mask_n.sum(dim=-1)
return _get_mvdr_vector(psd_s, psd_n, reference_vector, solution, diagonal_loading, diag_eps, eps)
def _get_updated_psd_speech(self, psd_s: torch.Tensor, mask_s: torch.Tensor) -> torch.Tensor:
r"""Update psd of speech recursively.
Args:
psd_s (torch.Tensor): The complex-valued power spectral density (PSD) matrix of target speech.
Tensor with dimensions `(..., freq, channel, channel)`.
mask_s (torch.Tensor): Time-Frequency mask of the target speech.
Tensor with dimensions `(..., freq, time)`.
Returns:
torch.Tensor: The updated PSD matrix of target speech.
"""
numerator = self.mask_sum_s / (self.mask_sum_s + mask_s.sum(dim=-1))
denominator = 1 / (self.mask_sum_s + mask_s.sum(dim=-1))
psd_s = self.psd_s * numerator[..., None, None] + psd_s * denominator[..., None, None]
return psd_s
def _get_updated_psd_noise(self, psd_n: torch.Tensor, mask_n: torch.Tensor) -> torch.Tensor:
r"""Update psd of noise recursively.
Args:
psd_n (torch.Tensor): The complex-valued power spectral density (PSD) matrix of noise.
Tensor with dimensions `(..., freq, channel, channel)`.
mask_n (torch.Tensor or None, optional): Time-Frequency mask of the noise.
Tensor with dimensions `(..., freq, time)`.
Returns:
torch.Tensor: The updated PSD matrix of noise.
"""
numerator = self.mask_sum_n / (self.mask_sum_n + mask_n.sum(dim=-1))
denominator = 1 / (self.mask_sum_n + mask_n.sum(dim=-1))
psd_n = self.psd_n * numerator[..., None, None] + psd_n * denominator[..., None, None]
return psd_n
[docs] def forward(
self, specgram: torch.Tensor, mask_s: torch.Tensor, mask_n: Optional[torch.Tensor] = None
) -> torch.Tensor:
"""Perform MVDR beamforming.
Args:
specgram (torch.Tensor): Multi-channel complex-valued spectrum.
Tensor with dimensions `(..., channel, freq, time)`
mask_s (torch.Tensor): Time-Frequency mask of target speech.
Tensor with dimensions `(..., freq, time)` if multi_mask is ``False``
or with dimensions `(..., channel, freq, time)` if multi_mask is ``True``.
mask_n (torch.Tensor or None, optional): Time-Frequency mask of noise.
Tensor with dimensions `(..., freq, time)` if multi_mask is ``False``
or with dimensions `(..., channel, freq, time)` if multi_mask is ``True``.
(Default: None)
Returns:
torch.Tensor: Single-channel complex-valued enhanced spectrum with dimensions `(..., freq, time)`.
"""
dtype = specgram.dtype
if specgram.ndim < 3:
raise ValueError(f"Expected at least 3D tensor (..., channel, freq, time). Found: {specgram.shape}")
if not specgram.is_complex():
raise ValueError(
f"The type of ``specgram`` tensor must be ``torch.cfloat`` or ``torch.cdouble``.\
Found: {specgram.dtype}"
)
if specgram.dtype == torch.cfloat:
specgram = specgram.cdouble() # Convert specgram to ``torch.cdouble``.
if mask_n is None:
warnings.warn("``mask_n`` is not provided, use ``1 - mask_s`` as ``mask_n``.")
mask_n = 1 - mask_s
psd_s = self.psd(specgram, mask_s) # (..., freq, time, channel, channel)
psd_n = self.psd(specgram, mask_n) # (..., freq, time, channel, channel)
u = torch.zeros(specgram.size()[:-2], device=specgram.device, dtype=torch.cdouble) # (..., channel)
u[..., self.ref_channel].fill_(1)
if self.online:
w_mvdr = self._get_updated_mvdr_vector(
psd_s, psd_n, mask_s, mask_n, u, self.solution, self.diag_loading, self.diag_eps
)
else:
w_mvdr = _get_mvdr_vector(psd_s, psd_n, u, self.solution, self.diag_loading, self.diag_eps)
specgram_enhanced = F.apply_beamforming(w_mvdr, specgram)
return specgram_enhanced.to(dtype)
[docs]class RTFMVDR(torch.nn.Module):
r"""Minimum Variance Distortionless Response (*MVDR* :cite:`capon1969high`) module
based on the relative transfer function (RTF) and power spectral density (PSD) matrix of noise.
.. devices:: CPU CUDA
.. properties:: Autograd TorchScript
Given the multi-channel complex-valued spectrum :math:`\textbf{Y}`, the relative transfer function (RTF) matrix
or the steering vector of target speech :math:`\bm{v}`, the PSD matrix of noise :math:`\bf{\Phi}_{\textbf{NN}}`, and
a one-hot vector that represents the reference channel :math:`\bf{u}`, the module computes the single-channel
complex-valued spectrum of the enhanced speech :math:`\hat{\textbf{S}}`. The formula is defined as:
.. math::
\hat{\textbf{S}}(f) = \textbf{w}_{\text{bf}}(f)^{\mathsf{H}} \textbf{Y}(f)
where :math:`\textbf{w}_{\text{bf}}(f)` is the MVDR beamforming weight for the :math:`f`-th frequency bin,
:math:`(.)^{\mathsf{H}}` denotes the Hermitian Conjugate operation.
The beamforming weight is computed by:
.. math::
\textbf{w}_{\text{MVDR}}(f) =
\frac{{{\bf{\Phi}_{\textbf{NN}}^{-1}}(f){\bm{v}}(f)}}
{{\bm{v}^{\mathsf{H}}}(f){\bf{\Phi}_{\textbf{NN}}^{-1}}(f){\bm{v}}(f)}
"""
[docs] def forward(
self,
specgram: Tensor,
rtf: Tensor,
psd_n: Tensor,
reference_channel: Union[int, Tensor],
diagonal_loading: bool = True,
diag_eps: float = 1e-7,
eps: float = 1e-8,
) -> Tensor:
"""
Args:
specgram (torch.Tensor): Multi-channel complex-valued spectrum.
Tensor with dimensions `(..., channel, freq, time)`
rtf (torch.Tensor): The complex-valued RTF vector of target speech.
Tensor with dimensions `(..., freq, channel)`.
psd_n (torch.Tensor): The complex-valued power spectral density (PSD) matrix of noise.
Tensor with dimensions `(..., freq, channel, channel)`.
reference_channel (int or torch.Tensor): Specifies the reference channel.
If the dtype is ``int``, it represents the reference channel index.
If the dtype is ``torch.Tensor``, its shape is `(..., channel)`, where the ``channel`` dimension
is one-hot.
diagonal_loading (bool, optional): If ``True``, enables applying diagonal loading to ``psd_n``.
(Default: ``True``)
diag_eps (float, optional): The coefficient multiplied to the identity matrix for diagonal loading.
It is only effective when ``diagonal_loading`` is set to ``True``. (Default: ``1e-7``)
eps (float, optional): Value to add to the denominator in the beamforming weight formula.
(Default: ``1e-8``)
Returns:
torch.Tensor: Single-channel complex-valued enhanced spectrum with dimensions `(..., freq, time)`.
"""
w_mvdr = F.mvdr_weights_rtf(rtf, psd_n, reference_channel, diagonal_loading, diag_eps, eps)
spectrum_enhanced = F.apply_beamforming(w_mvdr, specgram)
return spectrum_enhanced
[docs]class SoudenMVDR(torch.nn.Module):
r"""Minimum Variance Distortionless Response (*MVDR* :cite:`capon1969high`) module
based on the method proposed by *Souden et, al.* :cite:`souden2009optimal`.
.. devices:: CPU CUDA
.. properties:: Autograd TorchScript
Given the multi-channel complex-valued spectrum :math:`\textbf{Y}`, the power spectral density (PSD) matrix
of target speech :math:`\bf{\Phi}_{\textbf{SS}}`, the PSD matrix of noise :math:`\bf{\Phi}_{\textbf{NN}}`, and
a one-hot vector that represents the reference channel :math:`\bf{u}`, the module computes the single-channel
complex-valued spectrum of the enhanced speech :math:`\hat{\textbf{S}}`. The formula is defined as:
.. math::
\hat{\textbf{S}}(f) = \textbf{w}_{\text{bf}}(f)^{\mathsf{H}} \textbf{Y}(f)
where :math:`\textbf{w}_{\text{bf}}(f)` is the MVDR beamforming weight for the :math:`f`-th frequency bin.
The beamforming weight is computed by:
.. math::
\textbf{w}_{\text{MVDR}}(f) =
\frac{{{\bf{\Phi}_{\textbf{NN}}^{-1}}(f){\bf{\Phi}_{\textbf{SS}}}}(f)}
{\text{Trace}({{{\bf{\Phi}_{\textbf{NN}}^{-1}}(f) \bf{\Phi}_{\textbf{SS}}}(f))}}\bm{u}
"""
[docs] def forward(
self,
specgram: Tensor,
psd_s: Tensor,
psd_n: Tensor,
reference_channel: Union[int, Tensor],
diagonal_loading: bool = True,
diag_eps: float = 1e-7,
eps: float = 1e-8,
) -> torch.Tensor:
"""
Args:
specgram (torch.Tensor): Multi-channel complex-valued spectrum.
Tensor with dimensions `(..., channel, freq, time)`.
psd_s (torch.Tensor): The complex-valued power spectral density (PSD) matrix of target speech.
Tensor with dimensions `(..., freq, channel, channel)`.
psd_n (torch.Tensor): The complex-valued power spectral density (PSD) matrix of noise.
Tensor with dimensions `(..., freq, channel, channel)`.
reference_channel (int or torch.Tensor): Specifies the reference channel.
If the dtype is ``int``, it represents the reference channel index.
If the dtype is ``torch.Tensor``, its shape is `(..., channel)`, where the ``channel`` dimension
is one-hot.
diagonal_loading (bool, optional): If ``True``, enables applying diagonal loading to ``psd_n``.
(Default: ``True``)
diag_eps (float, optional): The coefficient multiplied to the identity matrix for diagonal loading.
It is only effective when ``diagonal_loading`` is set to ``True``. (Default: ``1e-7``)
eps (float, optional): Value to add to the denominator in the beamforming weight formula.
(Default: ``1e-8``)
Returns:
torch.Tensor: Single-channel complex-valued enhanced spectrum with dimensions `(..., freq, time)`.
"""
w_mvdr = F.mvdr_weights_souden(psd_s, psd_n, reference_channel, diagonal_loading, diag_eps, eps)
spectrum_enhanced = F.apply_beamforming(w_mvdr, specgram)
return spectrum_enhanced