Source code for torchaudio.models.wav2vec2.utils.import_fairseq
"""Import fariseq's wav2vec2.0 pretrained weights to torchaudios's format.
For this module to work, you need `fairseq`.
"""
import re
from torch.nn import Module
from ..model import wav2vec2_model, Wav2Vec2Model
def _parse_config(w2v_model):
encoder = w2v_model.encoder
conv_layers = w2v_model.feature_extractor.conv_layers
extractor_mode = "layer_norm"
if "GroupNorm" in conv_layers[0][2].__class__.__name__:
extractor_mode = "group_norm"
else:
extractor_mode = "layer_norm"
conv_layer_config = [(l[0].out_channels, l[0].kernel_size[0], l[0].stride[0]) for l in conv_layers]
if all(l[0].bias is None for l in conv_layers):
conv_bias = False
elif all(l[0].bias is not None for l in conv_layers):
conv_bias = True
else:
raise ValueError("Either all the convolutions layers have bias term or none of them should.")
config = {
"extractor_mode": extractor_mode,
"extractor_conv_layer_config": conv_layer_config,
"extractor_conv_bias": conv_bias,
"encoder_embed_dim": w2v_model.post_extract_proj.out_features,
"encoder_projection_dropout": w2v_model.dropout_input.p,
"encoder_pos_conv_kernel": encoder.pos_conv[0].kernel_size[0],
"encoder_pos_conv_groups": encoder.pos_conv[0].groups,
"encoder_num_layers": len(encoder.layers),
"encoder_num_heads": encoder.layers[0].self_attn.num_heads,
"encoder_attention_dropout": encoder.layers[0].self_attn.dropout_module.p,
"encoder_ff_interm_features": encoder.layers[0].fc1.out_features,
"encoder_ff_interm_dropout": encoder.layers[0].dropout2.p,
"encoder_dropout": encoder.layers[0].dropout3.p,
"encoder_layer_norm_first": encoder.layer_norm_first,
"encoder_layer_drop": encoder.layerdrop,
}
return config
def _map_key(key):
key_ = key
if key.startswith("w2v_model."):
key = key.replace("w2v_model.", "")
if re.match(r"(mask_emb|quantizer|project_q|final_proj|mask_emb)", key):
return None
# Feature Extractor
# Group norm when "extractor_mode" is "default".
# (Only the first layer)
# "conv_layers.0.2.weight" -> "conv_layers.0.layer_norm.weight"
# "conv_layers.0.2.bias" -> "conv_layers.0.layer_norm.bias"
match = re.match(r"feature_extractor\.conv_layers\.0\.2\.(weight|bias)", key)
if match:
return f"feature_extractor.conv_layers.0.layer_norm.{match.group(1)}"
# Convolutions
# "conv_layers.X.0.weight" -> "conv_layers.X.conv.weight"
# "conv_layers.X.0.bias" -> "conv_layers.X.conv.bias"
match = re.match(r"feature_extractor\.conv_layers\.(\d+)\.0\.(weight|bias)", key)
if match:
return f"feature_extractor.conv_layers.{match.group(1)}.conv.{match.group(2)}"
# Layer norm when "extractor_mode" is "layer_norm".
# "conv_layers.X.2.1.weight" -> "conv_layers.X.layer_norm.weight"
# "conv_layers.X.2.1.bias" -> "conv_layers.X.layer_norm.bias"
match = re.match(r"feature_extractor\.conv_layers\.(\d+)\.2\.1\.(weight|bias)", key)
if match:
return f"feature_extractor.conv_layers.{match.group(1)}.layer_norm.{match.group(2)}"
match = re.match(r"post_extract_proj\.(weight|bias)", key)
# Encoder - Feature projection
if match:
return f"encoder.feature_projection.projection.{match.group(1)}"
match = re.match(r"layer_norm\.(weight|bias)", key)
if match:
return f"encoder.feature_projection.layer_norm.{match.group(1)}"
# Encoder - Transformer - Convolutional positional embedding
match = re.match(r"encoder\.pos_conv\.0\.(bias|weight_g|weight_v)", key)
if match:
return f"encoder.transformer.pos_conv_embed.conv.{match.group(1)}"
match = re.match(r"encoder\.layer_norm\.(weight|bias)", key)
if match:
return f"encoder.transformer.layer_norm.{match.group(1)}"
# Encoder - Transformer - Self attention layers
match = re.match(r"encoder\.layers\.(\d+)\.self_attn\.((k_|v_|q_|out_)proj\.(weight|bias))", key)
if match:
return f"encoder.transformer.layers.{match.group(1)}.attention.{match.group(2)}"
match = re.match(r"encoder\.layers\.(\d+)\.self_attn_layer_norm\.(weight|bias)", key)
if match:
return f"encoder.transformer.layers.{match.group(1)}.layer_norm.{match.group(2)}"
match = re.match(r"encoder\.layers\.(\d+)\.fc1\.(weight|bias)", key)
if match:
return f"encoder.transformer.layers.{match.group(1)}.feed_forward.intermediate_dense.{match.group(2)}"
match = re.match(r"encoder\.layers\.(\d+)\.fc2\.(weight|bias)", key)
if match:
return f"encoder.transformer.layers.{match.group(1)}.feed_forward.output_dense.{match.group(2)}"
match = re.match(r"encoder\.layers\.(\d+)\.final_layer_norm\.(weight|bias)", key)
if match:
return f"encoder.transformer.layers.{match.group(1)}.final_layer_norm.{match.group(2)}"
match = re.match(r"proj\.(weight|bias)", key)
# Auxiliary Module
# Only relevant when loading fine-tuned models
if match:
return f"aux.{match.group(1)}"
# HuBERT Extension
if key in ["label_embs_concat"]:
return key
raise ValueError(f"Unexpected key: {key_}")
def _convert_state_dict(state_dict):
converted = {}
for k, v in state_dict.items():
k = _map_key(k)
if k is not None:
converted[k] = v
return converted
[docs]def import_fairseq_model(original: Module) -> Wav2Vec2Model:
"""Builds :class:`Wav2Vec2Model` from the corresponding model object of
`fairseq <https://github.com/pytorch/fairseq>`_.
Args:
original (torch.nn.Module):
An instance of fairseq's Wav2Vec2.0 or HuBERT model.
One of ``fairseq.models.wav2vec.wav2vec2_asr.Wav2VecEncoder``,
``fairseq.models.wav2vec.wav2vec2.Wav2Vec2Model`` or
``fairseq.models.hubert.hubert_asr.HubertEncoder``.
Returns:
Wav2Vec2Model: Imported model.
Example - Loading pretrain-only model
>>> from torchaudio.models.wav2vec2.utils import import_fairseq_model
>>>
>>> # Load model using fairseq
>>> model_file = 'wav2vec_small.pt'
>>> model, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task([model_file])
>>> original = model[0]
>>> imported = import_fairseq_model(original)
>>>
>>> # Perform feature extraction
>>> waveform, _ = torchaudio.load('audio.wav')
>>> features, _ = imported.extract_features(waveform)
>>>
>>> # Compare result with the original model from fairseq
>>> reference = original.feature_extractor(waveform).transpose(1, 2)
>>> torch.testing.assert_allclose(features, reference)
Example - Fine-tuned model
>>> from torchaudio.models.wav2vec2.utils import import_fairseq_model
>>>
>>> # Load model using fairseq
>>> model_file = 'wav2vec_small_960h.pt'
>>> model, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task([model_file])
>>> original = model[0]
>>> imported = import_fairseq_model(original.w2v_encoder)
>>>
>>> # Perform encoding
>>> waveform, _ = torchaudio.load('audio.wav')
>>> emission, _ = imported(waveform)
>>>
>>> # Compare result with the original model from fairseq
>>> mask = torch.zeros_like(waveform)
>>> reference = original(waveform, mask)['encoder_out'].transpose(0, 1)
>>> torch.testing.assert_allclose(emission, reference)
"""
class_ = original.__class__.__name__
if class_ == "Wav2Vec2Model":
return _import_wav2vec2_pretraining(original)
if class_ == "Wav2VecEncoder":
return _import_wav2vec2_finetuning(original)
if class_ == "HubertModel":
return _import_hubert_pretraining(original)
if class_ == "HubertEncoder":
return _import_hubert_finetuning(original)
raise ValueError(f"Expected an instance of `Wav2Vec2Model` or `Wav2VecEncoder`. Found: {class_}")
def _import_wav2vec2_finetuning(original: Module) -> Wav2Vec2Model:
config = _parse_config(original.w2v_model)
model = wav2vec2_model(**config, aux_num_out=original.proj.out_features)
model.load_state_dict(_convert_state_dict(original.state_dict()))
return model
def _import_wav2vec2_pretraining(original: Module) -> Wav2Vec2Model:
config = _parse_config(original)
model = wav2vec2_model(**config, aux_num_out=None)
model.load_state_dict(_convert_state_dict(original.state_dict()), strict=False)
return model
def _import_hubert_finetuning(original: Module) -> Wav2Vec2Model:
config = _parse_config(original.w2v_model)
model = wav2vec2_model(**config, aux_num_out=original.proj.out_features)
model.load_state_dict(_convert_state_dict(original.state_dict()), strict=False)
return model
def _import_hubert_pretraining(original: Module) -> Wav2Vec2Model:
config = _parse_config(original)
model = wav2vec2_model(**config, aux_num_out=None)
model.load_state_dict(_convert_state_dict(original.state_dict()), strict=False)
return model