Source code for torchaudio.datasets.libritts
import os
from pathlib import Path
from typing import Tuple, Union
import torchaudio
from torch import Tensor
from torch.hub import download_url_to_file
from torch.utils.data import Dataset
from torchaudio.datasets.utils import (
extract_archive,
)
URL = "train-clean-100"
FOLDER_IN_ARCHIVE = "LibriTTS"
_CHECKSUMS = {
"http://www.openslr.org/resources/60/dev-clean.tar.gz": "da0864e1bd26debed35da8a869dd5c04dfc27682921936de7cff9c8a254dbe1a", # noqa: E501
"http://www.openslr.org/resources/60/dev-other.tar.gz": "d413eda26f3a152ac7c9cf3658ef85504dfb1b625296e5fa83727f5186cca79c", # noqa: E501
"http://www.openslr.org/resources/60/test-clean.tar.gz": "234ea5b25859102a87024a4b9b86641f5b5aaaf1197335c95090cde04fe9a4f5", # noqa: E501
"http://www.openslr.org/resources/60/test-other.tar.gz": "33a5342094f3bba7ccc2e0500b9e72d558f72eb99328ac8debe1d9080402f10d", # noqa: E501
"http://www.openslr.org/resources/60/train-clean-100.tar.gz": "c5608bf1ef74bb621935382b8399c5cdd51cd3ee47cec51f00f885a64c6c7f6b", # noqa: E501
"http://www.openslr.org/resources/60/train-clean-360.tar.gz": "ce7cff44dcac46009d18379f37ef36551123a1dc4e5c8e4eb73ae57260de4886", # noqa: E501
"http://www.openslr.org/resources/60/train-other-500.tar.gz": "e35f7e34deeb2e2bdfe4403d88c8fdd5fbf64865cae41f027a185a6965f0a5df", # noqa: E501
}
def load_libritts_item(
fileid: str,
path: str,
ext_audio: str,
ext_original_txt: str,
ext_normalized_txt: str,
) -> Tuple[Tensor, int, str, str, int, int, str]:
speaker_id, chapter_id, segment_id, utterance_id = fileid.split("_")
utterance_id = fileid
normalized_text = utterance_id + ext_normalized_txt
normalized_text = os.path.join(path, speaker_id, chapter_id, normalized_text)
original_text = utterance_id + ext_original_txt
original_text = os.path.join(path, speaker_id, chapter_id, original_text)
file_audio = utterance_id + ext_audio
file_audio = os.path.join(path, speaker_id, chapter_id, file_audio)
# Load audio
waveform, sample_rate = torchaudio.load(file_audio)
# Load original text
with open(original_text) as ft:
original_text = ft.readline()
# Load normalized text
with open(normalized_text, "r") as ft:
normalized_text = ft.readline()
return (
waveform,
sample_rate,
original_text,
normalized_text,
int(speaker_id),
int(chapter_id),
utterance_id,
)
[docs]class LIBRITTS(Dataset):
"""Create a Dataset for LibriTTS.
Args:
root (str or Path): Path to the directory where the dataset is found or downloaded.
url (str, optional): The URL to download the dataset from,
or the type of the dataset to dowload.
Allowed type values are ``"dev-clean"``, ``"dev-other"``, ``"test-clean"``,
``"test-other"``, ``"train-clean-100"``, ``"train-clean-360"`` and
``"train-other-500"``. (default: ``"train-clean-100"``)
folder_in_archive (str, optional):
The top-level directory of the dataset. (default: ``"LibriTTS"``)
download (bool, optional):
Whether to download the dataset if it is not found at root path. (default: ``False``).
"""
_ext_original_txt = ".original.txt"
_ext_normalized_txt = ".normalized.txt"
_ext_audio = ".wav"
def __init__(
self,
root: Union[str, Path],
url: str = URL,
folder_in_archive: str = FOLDER_IN_ARCHIVE,
download: bool = False,
) -> None:
if url in [
"dev-clean",
"dev-other",
"test-clean",
"test-other",
"train-clean-100",
"train-clean-360",
"train-other-500",
]:
ext_archive = ".tar.gz"
base_url = "http://www.openslr.org/resources/60/"
url = os.path.join(base_url, url + ext_archive)
# Get string representation of 'root' in case Path object is passed
root = os.fspath(root)
basename = os.path.basename(url)
archive = os.path.join(root, basename)
basename = basename.split(".")[0]
folder_in_archive = os.path.join(folder_in_archive, basename)
self._path = os.path.join(root, folder_in_archive)
if download:
if not os.path.isdir(self._path):
if not os.path.isfile(archive):
checksum = _CHECKSUMS.get(url, None)
download_url_to_file(url, archive, hash_prefix=checksum)
extract_archive(archive)
self._walker = sorted(str(p.stem) for p in Path(self._path).glob("*/*/*" + self._ext_audio))
[docs] def __getitem__(self, n: int) -> Tuple[Tensor, int, str, str, int, int, str]:
"""Load the n-th sample from the dataset.
Args:
n (int): The index of the sample to be loaded
Returns:
(Tensor, int, str, str, str, int, int, str):
``(waveform, sample_rate, original_text, normalized_text, speaker_id, chapter_id, utterance_id)``
"""
fileid = self._walker[n]
return load_libritts_item(
fileid,
self._path,
self._ext_audio,
self._ext_original_txt,
self._ext_normalized_txt,
)
def __len__(self) -> int:
return len(self._walker)