Source code for torchvision.transforms.v2.functional._augment
import io
import PIL.Image
import torch
from torchvision import tv_tensors
from torchvision.io import decode_jpeg, encode_jpeg
from torchvision.transforms.functional import pil_to_tensor, to_pil_image
from torchvision.utils import _log_api_usage_once
from ._utils import _get_kernel, _register_kernel_internal
[docs]def erase(
inpt: torch.Tensor,
i: int,
j: int,
h: int,
w: int,
v: torch.Tensor,
inplace: bool = False,
) -> torch.Tensor:
"""See :class:`~torchvision.transforms.v2.RandomErase` for details."""
if torch.jit.is_scripting():
return erase_image(inpt, i=i, j=j, h=h, w=w, v=v, inplace=inplace)
_log_api_usage_once(erase)
kernel = _get_kernel(erase, type(inpt))
return kernel(inpt, i=i, j=j, h=h, w=w, v=v, inplace=inplace)
@_register_kernel_internal(erase, torch.Tensor)
@_register_kernel_internal(erase, tv_tensors.Image)
def erase_image(
image: torch.Tensor, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False
) -> torch.Tensor:
if not inplace:
image = image.clone()
image[..., i : i + h, j : j + w] = v
return image
@_register_kernel_internal(erase, PIL.Image.Image)
def _erase_image_pil(
image: PIL.Image.Image, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False
) -> PIL.Image.Image:
t_img = pil_to_tensor(image)
output = erase_image(t_img, i=i, j=j, h=h, w=w, v=v, inplace=inplace)
return to_pil_image(output, mode=image.mode)
@_register_kernel_internal(erase, tv_tensors.Video)
def erase_video(
video: torch.Tensor, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False
) -> torch.Tensor:
return erase_image(video, i=i, j=j, h=h, w=w, v=v, inplace=inplace)
[docs]def jpeg(image: torch.Tensor, quality: int) -> torch.Tensor:
"""See :class:`~torchvision.transforms.v2.JPEG` for details."""
if torch.jit.is_scripting():
return jpeg_image(image, quality=quality)
_log_api_usage_once(jpeg)
kernel = _get_kernel(jpeg, type(image))
return kernel(image, quality=quality)
@_register_kernel_internal(jpeg, torch.Tensor)
@_register_kernel_internal(jpeg, tv_tensors.Image)
def jpeg_image(image: torch.Tensor, quality: int) -> torch.Tensor:
original_shape = image.shape
image = image.view((-1,) + image.shape[-3:])
if image.shape[0] == 0: # degenerate
return image.reshape(original_shape).clone()
images = []
for i in range(image.shape[0]):
# isinstance checks are needed for torchscript.
encoded_image = encode_jpeg(image[i], quality=quality)
assert isinstance(encoded_image, torch.Tensor)
decoded_image = decode_jpeg(encoded_image)
assert isinstance(decoded_image, torch.Tensor)
images.append(decoded_image)
images = torch.stack(images, dim=0).view(original_shape)
return images
@_register_kernel_internal(jpeg, tv_tensors.Video)
def jpeg_video(video: torch.Tensor, quality: int) -> torch.Tensor:
return jpeg_image(video, quality=quality)
@_register_kernel_internal(jpeg, PIL.Image.Image)
def _jpeg_image_pil(image: PIL.Image.Image, quality: int) -> PIL.Image.Image:
raw_jpeg = io.BytesIO()
image.save(raw_jpeg, format="JPEG", quality=quality)
# we need to copy since PIL.Image.open() will return PIL.JpegImagePlugin.JpegImageFile
# which is a sub-class of PIL.Image.Image. this will fail check_transform() test.
return PIL.Image.open(raw_jpeg).copy()