Shortcuts

Source code for torchvision.datasets.folder

import os
import os.path
from pathlib import Path
from typing import Any, Callable, cast, Dict, List, Optional, Tuple, Union

from PIL import Image

from .vision import VisionDataset


def has_file_allowed_extension(filename: str, extensions: Union[str, Tuple[str, ...]]) -> bool:
    """Checks if a file is an allowed extension.

    Args:
        filename (string): path to a file
        extensions (tuple of strings): extensions to consider (lowercase)

    Returns:
        bool: True if the filename ends with one of given extensions
    """
    return filename.lower().endswith(extensions if isinstance(extensions, str) else tuple(extensions))


def is_image_file(filename: str) -> bool:
    """Checks if a file is an allowed image extension.

    Args:
        filename (string): path to a file

    Returns:
        bool: True if the filename ends with a known image extension
    """
    return has_file_allowed_extension(filename, IMG_EXTENSIONS)


def find_classes(directory: Union[str, Path]) -> Tuple[List[str], Dict[str, int]]:
    """Finds the class folders in a dataset.

    See :class:`DatasetFolder` for details.
    """
    classes = sorted(entry.name for entry in os.scandir(directory) if entry.is_dir())
    if not classes:
        raise FileNotFoundError(f"Couldn't find any class folder in {directory}.")

    class_to_idx = {cls_name: i for i, cls_name in enumerate(classes)}
    return classes, class_to_idx


def make_dataset(
    directory: Union[str, Path],
    class_to_idx: Optional[Dict[str, int]] = None,
    extensions: Optional[Union[str, Tuple[str, ...]]] = None,
    is_valid_file: Optional[Callable[[str], bool]] = None,
    allow_empty: bool = False,
) -> List[Tuple[str, int]]:
    """Generates a list of samples of a form (path_to_sample, class).

    See :class:`DatasetFolder` for details.

    Note: The class_to_idx parameter is here optional and will use the logic of the ``find_classes`` function
    by default.
    """
    directory = os.path.expanduser(directory)

    if class_to_idx is None:
        _, class_to_idx = find_classes(directory)
    elif not class_to_idx:
        raise ValueError("'class_to_index' must have at least one entry to collect any samples.")

    both_none = extensions is None and is_valid_file is None
    both_something = extensions is not None and is_valid_file is not None
    if both_none or both_something:
        raise ValueError("Both extensions and is_valid_file cannot be None or not None at the same time")

    if extensions is not None:

        def is_valid_file(x: str) -> bool:
            return has_file_allowed_extension(x, extensions)  # type: ignore[arg-type]

    is_valid_file = cast(Callable[[str], bool], is_valid_file)

    instances = []
    available_classes = set()
    for target_class in sorted(class_to_idx.keys()):
        class_index = class_to_idx[target_class]
        target_dir = os.path.join(directory, target_class)
        if not os.path.isdir(target_dir):
            continue
        for root, _, fnames in sorted(os.walk(target_dir, followlinks=True)):
            for fname in sorted(fnames):
                path = os.path.join(root, fname)
                if is_valid_file(path):
                    item = path, class_index
                    instances.append(item)

                    if target_class not in available_classes:
                        available_classes.add(target_class)

    empty_classes = set(class_to_idx.keys()) - available_classes
    if empty_classes and not allow_empty:
        msg = f"Found no valid file for the classes {', '.join(sorted(empty_classes))}. "
        if extensions is not None:
            msg += f"Supported extensions are: {extensions if isinstance(extensions, str) else ', '.join(extensions)}"
        raise FileNotFoundError(msg)

    return instances


[docs]class DatasetFolder(VisionDataset): """A generic data loader. This default directory structure can be customized by overriding the :meth:`find_classes` method. Args: root (str or ``pathlib.Path``): Root directory path. loader (callable): A function to load a sample given its path. extensions (tuple[string]): A list of allowed extensions. both extensions and is_valid_file should not be passed. transform (callable, optional): A function/transform that takes in a sample and returns a transformed version. E.g, ``transforms.RandomCrop`` for images. target_transform (callable, optional): A function/transform that takes in the target and transforms it. is_valid_file (callable, optional): A function that takes path of a file and check if the file is a valid file (used to check of corrupt files) both extensions and is_valid_file should not be passed. allow_empty(bool, optional): If True, empty folders are considered to be valid classes. An error is raised on empty folders if False (default). Attributes: classes (list): List of the class names sorted alphabetically. class_to_idx (dict): Dict with items (class_name, class_index). samples (list): List of (sample path, class_index) tuples targets (list): The class_index value for each image in the dataset """ def __init__( self, root: Union[str, Path], loader: Callable[[str], Any], extensions: Optional[Tuple[str, ...]] = None, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, is_valid_file: Optional[Callable[[str], bool]] = None, allow_empty: bool = False, ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) classes, class_to_idx = self.find_classes(self.root) samples = self.make_dataset( self.root, class_to_idx=class_to_idx, extensions=extensions, is_valid_file=is_valid_file, allow_empty=allow_empty, ) self.loader = loader self.extensions = extensions self.classes = classes self.class_to_idx = class_to_idx self.samples = samples self.targets = [s[1] for s in samples]
[docs] @staticmethod def make_dataset( directory: Union[str, Path], class_to_idx: Dict[str, int], extensions: Optional[Tuple[str, ...]] = None, is_valid_file: Optional[Callable[[str], bool]] = None, allow_empty: bool = False, ) -> List[Tuple[str, int]]: """Generates a list of samples of a form (path_to_sample, class). This can be overridden to e.g. read files from a compressed zip file instead of from the disk. Args: directory (str): root dataset directory, corresponding to ``self.root``. class_to_idx (Dict[str, int]): Dictionary mapping class name to class index. extensions (optional): A list of allowed extensions. Either extensions or is_valid_file should be passed. Defaults to None. is_valid_file (optional): A function that takes path of a file and checks if the file is a valid file (used to check of corrupt files) both extensions and is_valid_file should not be passed. Defaults to None. allow_empty(bool, optional): If True, empty folders are considered to be valid classes. An error is raised on empty folders if False (default). Raises: ValueError: In case ``class_to_idx`` is empty. ValueError: In case ``extensions`` and ``is_valid_file`` are None or both are not None. FileNotFoundError: In case no valid file was found for any class. Returns: List[Tuple[str, int]]: samples of a form (path_to_sample, class) """ if class_to_idx is None: # prevent potential bug since make_dataset() would use the class_to_idx logic of the # find_classes() function, instead of using that of the find_classes() method, which # is potentially overridden and thus could have a different logic. raise ValueError("The class_to_idx parameter cannot be None.") return make_dataset( directory, class_to_idx, extensions=extensions, is_valid_file=is_valid_file, allow_empty=allow_empty )
[docs] def find_classes(self, directory: Union[str, Path]) -> Tuple[List[str], Dict[str, int]]: """Find the class folders in a dataset structured as follows:: directory/ ├── class_x │ ├── xxx.ext │ ├── xxy.ext │ └── ... │ └── xxz.ext └── class_y ├── 123.ext ├── nsdf3.ext └── ... └── asd932_.ext This method can be overridden to only consider a subset of classes, or to adapt to a different dataset directory structure. Args: directory(str): Root directory path, corresponding to ``self.root`` Raises: FileNotFoundError: If ``dir`` has no class folders. Returns: (Tuple[List[str], Dict[str, int]]): List of all classes and dictionary mapping each class to an index. """ return find_classes(directory)
def __getitem__(self, index: int) -> Tuple[Any, Any]: """ Args: index (int): Index Returns: tuple: (sample, target) where target is class_index of the target class. """ path, target = self.samples[index] sample = self.loader(path) if self.transform is not None: sample = self.transform(sample) if self.target_transform is not None: target = self.target_transform(target) return sample, target def __len__(self) -> int: return len(self.samples)
IMG_EXTENSIONS = (".jpg", ".jpeg", ".png", ".ppm", ".bmp", ".pgm", ".tif", ".tiff", ".webp") def pil_loader(path: str) -> Image.Image: # open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835) with open(path, "rb") as f: img = Image.open(f) return img.convert("RGB") # TODO: specify the return type def accimage_loader(path: str) -> Any: import accimage try: return accimage.Image(path) except OSError: # Potentially a decoding problem, fall back to PIL.Image return pil_loader(path) def default_loader(path: str) -> Any: from torchvision import get_image_backend if get_image_backend() == "accimage": return accimage_loader(path) else: return pil_loader(path)
[docs]class ImageFolder(DatasetFolder): """A generic data loader where the images are arranged in this way by default: :: root/dog/xxx.png root/dog/xxy.png root/dog/[...]/xxz.png root/cat/123.png root/cat/nsdf3.png root/cat/[...]/asd932_.png This class inherits from :class:`~torchvision.datasets.DatasetFolder` so the same methods can be overridden to customize the dataset. Args: root (str or ``pathlib.Path``): Root directory path. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. loader (callable, optional): A function to load an image given its path. is_valid_file (callable, optional): A function that takes path of an Image file and check if the file is a valid file (used to check of corrupt files) allow_empty(bool, optional): If True, empty folders are considered to be valid classes. An error is raised on empty folders if False (default). Attributes: classes (list): List of the class names sorted alphabetically. class_to_idx (dict): Dict with items (class_name, class_index). imgs (list): List of (image path, class_index) tuples """ def __init__( self, root: Union[str, Path], transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, loader: Callable[[str], Any] = default_loader, is_valid_file: Optional[Callable[[str], bool]] = None, allow_empty: bool = False, ): super().__init__( root, loader, IMG_EXTENSIONS if is_valid_file is None else None, transform=transform, target_transform=target_transform, is_valid_file=is_valid_file, allow_empty=allow_empty, ) self.imgs = self.samples

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources