class torchvision.transforms.v2.RandAugment(num_ops: int = 2, magnitude: int = 9, num_magnitude_bins: int = 31, interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST, fill: Union[int, float, Sequence[int], Sequence[float], None, Dict[Union[Type, str], Optional[Union[int, float, Sequence[int], Sequence[float]]]]] = None)[source]

[BETA] RandAugment data augmentation method based on “RandAugment: Practical automated data augmentation with a reduced search space”.


The RandAugment transform is in Beta stage, and while we do not expect disruptive breaking changes, some APIs may slightly change according to user feedback. Please submit any feedback you may have in this issue:

This transformation works on images and videos only.

If the input is torch.Tensor, it should be of type torch.uint8, and it is expected to have […, 1 or 3, H, W] shape, where … means an arbitrary number of leading dimensions. If img is PIL Image, it is expected to be in mode “L” or “RGB”.

  • num_ops (int, optional) – Number of augmentation transformations to apply sequentially.

  • magnitude (int, optional) – Magnitude for all the transformations.

  • num_magnitude_bins (int, optional) – The number of different magnitude values.

  • interpolation (InterpolationMode, optional) – Desired interpolation enum defined by torchvision.transforms.InterpolationMode. Default is InterpolationMode.NEAREST. If input is Tensor, only InterpolationMode.NEAREST, InterpolationMode.BILINEAR are supported.

  • fill (sequence or number, optional) – Pixel fill value for the area outside the transformed image. If given a number, the value is used for all bands respectively.

Examples using RandAugment:

Illustration of transforms

Illustration of transforms
forward(*inputs: Any) Any[source]

Defines the computation performed at every call.

Should be overridden by all subclasses.


Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.


Access comprehensive developer documentation for PyTorch

View Docs


Get in-depth tutorials for beginners and advanced developers

View Tutorials


Find development resources and get your questions answered

View Resources