Source code for torchvision.tv_tensors._video

from __future__ import annotations

from typing import Any, Optional, Union

import torch

from ._tv_tensor import TVTensor

[docs]class Video(TVTensor): """:class:`torch.Tensor` subclass for videos with shape ``[..., T, C, H, W]``. Args: data (tensor-like): Any data that can be turned into a tensor with :func:`torch.as_tensor`. dtype (torch.dtype, optional): Desired data type. If omitted, will be inferred from ``data``. device (torch.device, optional): Desired device. If omitted and ``data`` is a :class:`torch.Tensor`, the device is taken from it. Otherwise, the video is constructed on the CPU. requires_grad (bool, optional): Whether autograd should record operations. If omitted and ``data`` is a :class:`torch.Tensor`, the value is taken from it. Otherwise, defaults to ``False``. """ def __new__( cls, data: Any, *, dtype: Optional[torch.dtype] = None, device: Optional[Union[torch.device, str, int]] = None, requires_grad: Optional[bool] = None, ) -> Video: tensor = cls._to_tensor(data, dtype=dtype, device=device, requires_grad=requires_grad) if data.ndim < 4: raise ValueError return tensor.as_subclass(cls) def __repr__(self, *, tensor_contents: Any = None) -> str: # type: ignore[override] return self._make_repr()


Access comprehensive developer documentation for PyTorch

View Docs


Get in-depth tutorials for beginners and advanced developers

View Tutorials


Find development resources and get your questions answered

View Resources