Source code for torchvision.datasets.lsun
import io
import os.path
import pickle
import string
from collections.abc import Iterable
from pathlib import Path
from typing import Any, Callable, cast, List, Optional, Tuple, Union
from PIL import Image
from .utils import iterable_to_str, verify_str_arg
from .vision import VisionDataset
class LSUNClass(VisionDataset):
def __init__(
self, root: str, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None
) -> None:
import lmdb
super().__init__(root, transform=transform, target_transform=target_transform)
self.env = lmdb.open(root, max_readers=1, readonly=True, lock=False, readahead=False, meminit=False)
with self.env.begin(write=False) as txn:
self.length = txn.stat()["entries"]
cache_file = "_cache_" + "".join(c for c in root if c in string.ascii_letters)
if os.path.isfile(cache_file):
self.keys = pickle.load(open(cache_file, "rb"))
else:
with self.env.begin(write=False) as txn:
self.keys = [key for key in txn.cursor().iternext(keys=True, values=False)]
pickle.dump(self.keys, open(cache_file, "wb"))
def __getitem__(self, index: int) -> Tuple[Any, Any]:
img, target = None, None
env = self.env
with env.begin(write=False) as txn:
imgbuf = txn.get(self.keys[index])
buf = io.BytesIO()
buf.write(imgbuf)
buf.seek(0)
img = Image.open(buf).convert("RGB")
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target
def __len__(self) -> int:
return self.length
[docs]class LSUN(VisionDataset):
"""`LSUN <https://paperswithcode.com/dataset/lsun>`_ dataset.
You will need to install the ``lmdb`` package to use this dataset: run
``pip install lmdb``
Args:
root (str or ``pathlib.Path``): Root directory for the database files.
classes (string or list): One of {'train', 'val', 'test'} or a list of
categories to load. e,g. ['bedroom_train', 'church_outdoor_train'].
transform (callable, optional): A function/transform that takes in a PIL image
and returns a transformed version. E.g, ``transforms.RandomCrop``
target_transform (callable, optional): A function/transform that takes in the
target and transforms it.
"""
def __init__(
self,
root: Union[str, Path],
classes: Union[str, List[str]] = "train",
transform: Optional[Callable] = None,
target_transform: Optional[Callable] = None,
) -> None:
super().__init__(root, transform=transform, target_transform=target_transform)
self.classes = self._verify_classes(classes)
# for each class, create an LSUNClassDataset
self.dbs = []
for c in self.classes:
self.dbs.append(LSUNClass(root=os.path.join(root, f"{c}_lmdb"), transform=transform))
self.indices = []
count = 0
for db in self.dbs:
count += len(db)
self.indices.append(count)
self.length = count
def _verify_classes(self, classes: Union[str, List[str]]) -> List[str]:
categories = [
"bedroom",
"bridge",
"church_outdoor",
"classroom",
"conference_room",
"dining_room",
"kitchen",
"living_room",
"restaurant",
"tower",
]
dset_opts = ["train", "val", "test"]
try:
classes = cast(str, classes)
verify_str_arg(classes, "classes", dset_opts)
if classes == "test":
classes = [classes]
else:
classes = [c + "_" + classes for c in categories]
except ValueError:
if not isinstance(classes, Iterable):
msg = "Expected type str or Iterable for argument classes, but got type {}."
raise ValueError(msg.format(type(classes)))
classes = list(classes)
msg_fmtstr_type = "Expected type str for elements in argument classes, but got type {}."
for c in classes:
verify_str_arg(c, custom_msg=msg_fmtstr_type.format(type(c)))
c_short = c.split("_")
category, dset_opt = "_".join(c_short[:-1]), c_short[-1]
msg_fmtstr = "Unknown value '{}' for {}. Valid values are {{{}}}."
msg = msg_fmtstr.format(category, "LSUN class", iterable_to_str(categories))
verify_str_arg(category, valid_values=categories, custom_msg=msg)
msg = msg_fmtstr.format(dset_opt, "postfix", iterable_to_str(dset_opts))
verify_str_arg(dset_opt, valid_values=dset_opts, custom_msg=msg)
return classes
[docs] def __getitem__(self, index: int) -> Tuple[Any, Any]:
"""
Args:
index (int): Index
Returns:
tuple: Tuple (image, target) where target is the index of the target category.
"""
target = 0
sub = 0
for ind in self.indices:
if index < ind:
break
target += 1
sub = ind
db = self.dbs[target]
index = index - sub
if self.target_transform is not None:
target = self.target_transform(target)
img, _ = db[index]
return img, target
def __len__(self) -> int:
return self.length
def extra_repr(self) -> str:
return "Classes: {classes}".format(**self.__dict__)