Shortcuts

Source code for torchvision.datasets.fer2013

import csv
import pathlib
from typing import Any, Callable, Optional, Tuple, Union

import torch
from PIL import Image

from .utils import check_integrity, verify_str_arg
from .vision import VisionDataset


[docs]class FER2013(VisionDataset): """`FER2013 <https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge>`_ Dataset. .. note:: This dataset can return test labels only if ``fer2013.csv`` OR ``icml_face_data.csv`` are present in ``root/fer2013/``. If only ``train.csv`` and ``test.csv`` are present, the test labels are set to ``None``. Args: root (str or ``pathlib.Path``): Root directory of dataset where directory ``root/fer2013`` exists. This directory may contain either ``fer2013.csv``, ``icml_face_data.csv``, or both ``train.csv`` and ``test.csv``. Precendence is given in that order, i.e. if ``fer2013.csv`` is present then the rest of the files will be ignored. All these (combinations of) files contain the same data and are supported for convenience, but only ``fer2013.csv`` and ``icml_face_data.csv`` are able to return non-None test labels. split (string, optional): The dataset split, supports ``"train"`` (default), or ``"test"``. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. """ _RESOURCES = { "train": ("train.csv", "3f0dfb3d3fd99c811a1299cb947e3131"), "test": ("test.csv", "b02c2298636a634e8c2faabbf3ea9a23"), # The fer2013.csv and icml_face_data.csv files contain both train and # tests instances, and unlike test.csv they contain the labels for the # test instances. We give these 2 files precedence over train.csv and # test.csv. And yes, they both contain the same data, but with different # column names (note the spaces) and ordering: # $ head -n 1 fer2013.csv icml_face_data.csv train.csv test.csv # ==> fer2013.csv <== # emotion,pixels,Usage # # ==> icml_face_data.csv <== # emotion, Usage, pixels # # ==> train.csv <== # emotion,pixels # # ==> test.csv <== # pixels "fer": ("fer2013.csv", "f8428a1edbd21e88f42c73edd2a14f95"), "icml": ("icml_face_data.csv", "b114b9e04e6949e5fe8b6a98b3892b1d"), } def __init__( self, root: Union[str, pathlib.Path], split: str = "train", transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, ) -> None: self._split = verify_str_arg(split, "split", ("train", "test")) super().__init__(root, transform=transform, target_transform=target_transform) base_folder = pathlib.Path(self.root) / "fer2013" use_fer_file = (base_folder / self._RESOURCES["fer"][0]).exists() use_icml_file = not use_fer_file and (base_folder / self._RESOURCES["icml"][0]).exists() file_name, md5 = self._RESOURCES["fer" if use_fer_file else "icml" if use_icml_file else self._split] data_file = base_folder / file_name if not check_integrity(str(data_file), md5=md5): raise RuntimeError( f"{file_name} not found in {base_folder} or corrupted. " f"You can download it from " f"https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge" ) pixels_key = " pixels" if use_icml_file else "pixels" usage_key = " Usage" if use_icml_file else "Usage" def get_img(row): return torch.tensor([int(idx) for idx in row[pixels_key].split()], dtype=torch.uint8).reshape(48, 48) def get_label(row): if use_fer_file or use_icml_file or self._split == "train": return int(row["emotion"]) else: return None with open(data_file, "r", newline="") as file: rows = (row for row in csv.DictReader(file)) if use_fer_file or use_icml_file: valid_keys = ("Training",) if self._split == "train" else ("PublicTest", "PrivateTest") rows = (row for row in rows if row[usage_key] in valid_keys) self._samples = [(get_img(row), get_label(row)) for row in rows] def __len__(self) -> int: return len(self._samples)
[docs] def __getitem__(self, idx: int) -> Tuple[Any, Any]: image_tensor, target = self._samples[idx] image = Image.fromarray(image_tensor.numpy()) if self.transform is not None: image = self.transform(image) if self.target_transform is not None: target = self.target_transform(target) return image, target
def extra_repr(self) -> str: return f"split={self._split}"

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources