Source code for torchvision.datasets.fer2013
import csv
import pathlib
from typing import Any, Callable, Optional, Tuple, Union
import torch
from PIL import Image
from .utils import check_integrity, verify_str_arg
from .vision import VisionDataset
[docs]class FER2013(VisionDataset):
"""`FER2013
<https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge>`_ Dataset.
.. note::
This dataset can return test labels only if ``fer2013.csv`` OR
``icml_face_data.csv`` are present in ``root/fer2013/``. If only
``train.csv`` and ``test.csv`` are present, the test labels are set to
``None``.
Args:
root (str or ``pathlib.Path``): Root directory of dataset where directory
``root/fer2013`` exists. This directory may contain either
``fer2013.csv``, ``icml_face_data.csv``, or both ``train.csv`` and
``test.csv``. Precendence is given in that order, i.e. if
``fer2013.csv`` is present then the rest of the files will be
ignored. All these (combinations of) files contain the same data and
are supported for convenience, but only ``fer2013.csv`` and
``icml_face_data.csv`` are able to return non-None test labels.
split (string, optional): The dataset split, supports ``"train"`` (default), or ``"test"``.
transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed
version. E.g, ``transforms.RandomCrop``
target_transform (callable, optional): A function/transform that takes in the target and transforms it.
"""
_RESOURCES = {
"train": ("train.csv", "3f0dfb3d3fd99c811a1299cb947e3131"),
"test": ("test.csv", "b02c2298636a634e8c2faabbf3ea9a23"),
# The fer2013.csv and icml_face_data.csv files contain both train and
# tests instances, and unlike test.csv they contain the labels for the
# test instances. We give these 2 files precedence over train.csv and
# test.csv. And yes, they both contain the same data, but with different
# column names (note the spaces) and ordering:
# $ head -n 1 fer2013.csv icml_face_data.csv train.csv test.csv
# ==> fer2013.csv <==
# emotion,pixels,Usage
#
# ==> icml_face_data.csv <==
# emotion, Usage, pixels
#
# ==> train.csv <==
# emotion,pixels
#
# ==> test.csv <==
# pixels
"fer": ("fer2013.csv", "f8428a1edbd21e88f42c73edd2a14f95"),
"icml": ("icml_face_data.csv", "b114b9e04e6949e5fe8b6a98b3892b1d"),
}
def __init__(
self,
root: Union[str, pathlib.Path],
split: str = "train",
transform: Optional[Callable] = None,
target_transform: Optional[Callable] = None,
) -> None:
self._split = verify_str_arg(split, "split", ("train", "test"))
super().__init__(root, transform=transform, target_transform=target_transform)
base_folder = pathlib.Path(self.root) / "fer2013"
use_fer_file = (base_folder / self._RESOURCES["fer"][0]).exists()
use_icml_file = not use_fer_file and (base_folder / self._RESOURCES["icml"][0]).exists()
file_name, md5 = self._RESOURCES["fer" if use_fer_file else "icml" if use_icml_file else self._split]
data_file = base_folder / file_name
if not check_integrity(str(data_file), md5=md5):
raise RuntimeError(
f"{file_name} not found in {base_folder} or corrupted. "
f"You can download it from "
f"https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge"
)
pixels_key = " pixels" if use_icml_file else "pixels"
usage_key = " Usage" if use_icml_file else "Usage"
def get_img(row):
return torch.tensor([int(idx) for idx in row[pixels_key].split()], dtype=torch.uint8).reshape(48, 48)
def get_label(row):
if use_fer_file or use_icml_file or self._split == "train":
return int(row["emotion"])
else:
return None
with open(data_file, "r", newline="") as file:
rows = (row for row in csv.DictReader(file))
if use_fer_file or use_icml_file:
valid_keys = ("Training",) if self._split == "train" else ("PublicTest", "PrivateTest")
rows = (row for row in rows if row[usage_key] in valid_keys)
self._samples = [(get_img(row), get_label(row)) for row in rows]
def __len__(self) -> int:
return len(self._samples)
[docs] def __getitem__(self, idx: int) -> Tuple[Any, Any]:
image_tensor, target = self._samples[idx]
image = Image.fromarray(image_tensor.numpy())
if self.transform is not None:
image = self.transform(image)
if self.target_transform is not None:
target = self.target_transform(target)
return image, target
def extra_repr(self) -> str:
return f"split={self._split}"