Source code for torchvision.tv_tensors._dataset_wrapper
# type: ignore
from __future__ import annotations
import collections.abc
import contextlib
from collections import defaultdict
from copy import copy
import torch
from torchvision import datasets, tv_tensors
from torchvision.transforms.v2 import functional as F
__all__ = ["wrap_dataset_for_transforms_v2"]
[docs]def wrap_dataset_for_transforms_v2(dataset, target_keys=None):
"""Wrap a ``torchvision.dataset`` for usage with :mod:`torchvision.transforms.v2`.
Example:
>>> dataset = torchvision.datasets.CocoDetection(...)
>>> dataset = wrap_dataset_for_transforms_v2(dataset)
.. note::
For now, only the most popular datasets are supported. Furthermore, the wrapper only supports dataset
configurations that are fully supported by ``torchvision.transforms.v2``. If you encounter an error prompting you
to raise an issue to ``torchvision`` for a dataset or configuration that you need, please do so.
The dataset samples are wrapped according to the description below.
Special cases:
* :class:`~torchvision.datasets.CocoDetection`: Instead of returning the target as list of dicts, the wrapper
returns a dict of lists. In addition, the key-value-pairs ``"boxes"`` (in ``XYXY`` coordinate format),
``"masks"`` and ``"labels"`` are added and wrap the data in the corresponding ``torchvision.tv_tensors``.
The original keys are preserved. If ``target_keys`` is omitted, returns only the values for the
``"image_id"``, ``"boxes"``, and ``"labels"``.
* :class:`~torchvision.datasets.VOCDetection`: The key-value-pairs ``"boxes"`` and ``"labels"`` are added to
the target and wrap the data in the corresponding ``torchvision.tv_tensors``. The original keys are
preserved. If ``target_keys`` is omitted, returns only the values for the ``"boxes"`` and ``"labels"``.
* :class:`~torchvision.datasets.CelebA`: The target for ``target_type="bbox"`` is converted to the ``XYXY``
coordinate format and wrapped into a :class:`~torchvision.tv_tensors.BoundingBoxes` tv_tensor.
* :class:`~torchvision.datasets.Kitti`: Instead returning the target as list of dicts, the wrapper returns a
dict of lists. In addition, the key-value-pairs ``"boxes"`` and ``"labels"`` are added and wrap the data
in the corresponding ``torchvision.tv_tensors``. The original keys are preserved. If ``target_keys`` is
omitted, returns only the values for the ``"boxes"`` and ``"labels"``.
* :class:`~torchvision.datasets.OxfordIIITPet`: The target for ``target_type="segmentation"`` is wrapped into a
:class:`~torchvision.tv_tensors.Mask` tv_tensor.
* :class:`~torchvision.datasets.Cityscapes`: The target for ``target_type="semantic"`` is wrapped into a
:class:`~torchvision.tv_tensors.Mask` tv_tensor. The target for ``target_type="instance"`` is *replaced* by
a dictionary with the key-value-pairs ``"masks"`` (as :class:`~torchvision.tv_tensors.Mask` tv_tensor) and
``"labels"``.
* :class:`~torchvision.datasets.WIDERFace`: The value for key ``"bbox"`` in the target is converted to ``XYXY``
coordinate format and wrapped into a :class:`~torchvision.tv_tensors.BoundingBoxes` tv_tensor.
Image classification datasets
This wrapper is a no-op for image classification datasets, since they were already fully supported by
:mod:`torchvision.transforms` and thus no change is needed for :mod:`torchvision.transforms.v2`.
Segmentation datasets
Segmentation datasets, e.g. :class:`~torchvision.datasets.VOCSegmentation`, return a two-tuple of
:class:`PIL.Image.Image`'s. This wrapper leaves the image as is (first item), while wrapping the
segmentation mask into a :class:`~torchvision.tv_tensors.Mask` (second item).
Video classification datasets
Video classification datasets, e.g. :class:`~torchvision.datasets.Kinetics`, return a three-tuple containing a
:class:`torch.Tensor` for the video and audio and a :class:`int` as label. This wrapper wraps the video into a
:class:`~torchvision.tv_tensors.Video` while leaving the other items as is.
.. note::
Only datasets constructed with ``output_format="TCHW"`` are supported, since the alternative
``output_format="THWC"`` is not supported by :mod:`torchvision.transforms.v2`.
Args:
dataset: the dataset instance to wrap for compatibility with transforms v2.
target_keys: Target keys to return in case the target is a dictionary. If ``None`` (default), selected keys are
specific to the dataset. If ``"all"``, returns the full target. Can also be a collection of strings for
fine grained access. Currently only supported for :class:`~torchvision.datasets.CocoDetection`,
:class:`~torchvision.datasets.VOCDetection`, :class:`~torchvision.datasets.Kitti`, and
:class:`~torchvision.datasets.WIDERFace`. See above for details.
"""
if not (
target_keys is None
or target_keys == "all"
or (isinstance(target_keys, collections.abc.Collection) and all(isinstance(key, str) for key in target_keys))
):
raise ValueError(
f"`target_keys` can be None, 'all', or a collection of strings denoting the keys to be returned, "
f"but got {target_keys}"
)
# Imagine we have isinstance(dataset, datasets.ImageNet). This will create a new class with the name
# "WrappedImageNet" at runtime that doubly inherits from VisionDatasetTVTensorWrapper (see below) as well as the
# original ImageNet class. This allows the user to do regular isinstance(wrapped_dataset, datasets.ImageNet) checks,
# while we can still inject everything that we need.
wrapped_dataset_cls = type(f"Wrapped{type(dataset).__name__}", (VisionDatasetTVTensorWrapper, type(dataset)), {})
# Since VisionDatasetTVTensorWrapper comes before ImageNet in the MRO, calling the class hits
# VisionDatasetTVTensorWrapper.__init__ first. Since we are never doing super().__init__(...), the constructor of
# ImageNet is never hit. That is by design, since we don't want to create the dataset instance again, but rather
# have the existing instance as attribute on the new object.
return wrapped_dataset_cls(dataset, target_keys)
class WrapperFactories(dict):
def register(self, dataset_cls):
def decorator(wrapper_factory):
self[dataset_cls] = wrapper_factory
return wrapper_factory
return decorator
# We need this two-stage design, i.e. a wrapper factory producing the actual wrapper, since some wrappers depend on the
# dataset instance rather than just the class, since they require the user defined instance attributes. Thus, we can
# provide a wrapping from the dataset class to the factory here, but can only instantiate the wrapper at runtime when
# we have access to the dataset instance.
WRAPPER_FACTORIES = WrapperFactories()
class VisionDatasetTVTensorWrapper:
def __init__(self, dataset, target_keys):
dataset_cls = type(dataset)
if not isinstance(dataset, datasets.VisionDataset):
raise TypeError(
f"This wrapper is meant for subclasses of `torchvision.datasets.VisionDataset`, "
f"but got a '{dataset_cls.__name__}' instead.\n"
f"For an example of how to perform the wrapping for custom datasets, see\n\n"
"https://pytorch.org/vision/main/auto_examples/plot_tv_tensors.html#do-i-have-to-wrap-the-output-of-the-datasets-myself"
)
for cls in dataset_cls.mro():
if cls in WRAPPER_FACTORIES:
wrapper_factory = WRAPPER_FACTORIES[cls]
if target_keys is not None and cls not in {
datasets.CocoDetection,
datasets.VOCDetection,
datasets.Kitti,
datasets.WIDERFace,
}:
raise ValueError(
f"`target_keys` is currently only supported for `CocoDetection`, `VOCDetection`, `Kitti`, "
f"and `WIDERFace`, but got {cls.__name__}."
)
break
elif cls is datasets.VisionDataset:
# TODO: If we have documentation on how to do that, put a link in the error message.
msg = f"No wrapper exists for dataset class {dataset_cls.__name__}. Please wrap the output yourself."
if dataset_cls in datasets.__dict__.values():
msg = (
f"{msg} If an automated wrapper for this dataset would be useful for you, "
f"please open an issue at https://github.com/pytorch/vision/issues."
)
raise TypeError(msg)
self._dataset = dataset
self._target_keys = target_keys
self._wrapper = wrapper_factory(dataset, target_keys)
# We need to disable the transforms on the dataset here to be able to inject the wrapping before we apply them.
# Although internally, `datasets.VisionDataset` merges `transform` and `target_transform` into the joint
# `transforms`
# https://github.com/pytorch/vision/blob/135a0f9ea9841b6324b4fe8974e2543cbb95709a/torchvision/datasets/vision.py#L52-L54
# some (if not most) datasets still use `transform` and `target_transform` individually. Thus, we need to
# disable all three here to be able to extract the untransformed sample to wrap.
self.transform, dataset.transform = dataset.transform, None
self.target_transform, dataset.target_transform = dataset.target_transform, None
self.transforms, dataset.transforms = dataset.transforms, None
def __getattr__(self, item):
with contextlib.suppress(AttributeError):
return object.__getattribute__(self, item)
return getattr(self._dataset, item)
def __getitem__(self, idx):
# This gets us the raw sample since we disabled the transforms for the underlying dataset in the constructor
# of this class
sample = self._dataset[idx]
sample = self._wrapper(idx, sample)
# Regardless of whether the user has supplied the transforms individually (`transform` and `target_transform`)
# or joint (`transforms`), we can access the full functionality through `transforms`
if self.transforms is not None:
sample = self.transforms(*sample)
return sample
def __len__(self):
return len(self._dataset)
# TODO: maybe we should use __getstate__ and __setstate__ instead of __reduce__, as recommended in the docs.
def __reduce__(self):
# __reduce__ gets called when we try to pickle the dataset.
# In a DataLoader with spawn context, this gets called `num_workers` times from the main process.
# We have to reset the [target_]transform[s] attributes of the dataset
# to their original values, because we previously set them to None in __init__().
dataset = copy(self._dataset)
dataset.transform = self.transform
dataset.transforms = self.transforms
dataset.target_transform = self.target_transform
return wrap_dataset_for_transforms_v2, (dataset, self._target_keys)
def raise_not_supported(description):
raise RuntimeError(
f"{description} is currently not supported by this wrapper. "
f"If this would be helpful for you, please open an issue at https://github.com/pytorch/vision/issues."
)
def identity(item):
return item
def identity_wrapper_factory(dataset, target_keys):
def wrapper(idx, sample):
return sample
return wrapper
def pil_image_to_mask(pil_image):
return tv_tensors.Mask(pil_image)
def parse_target_keys(target_keys, *, available, default):
if target_keys is None:
target_keys = default
if target_keys == "all":
target_keys = available
else:
target_keys = set(target_keys)
extra = target_keys - available
if extra:
raise ValueError(f"Target keys {sorted(extra)} are not available")
return target_keys
def list_of_dicts_to_dict_of_lists(list_of_dicts):
dict_of_lists = defaultdict(list)
for dct in list_of_dicts:
for key, value in dct.items():
dict_of_lists[key].append(value)
return dict(dict_of_lists)
def wrap_target_by_type(target, *, target_types, type_wrappers):
if not isinstance(target, (tuple, list)):
target = [target]
wrapped_target = tuple(
type_wrappers.get(target_type, identity)(item) for target_type, item in zip(target_types, target)
)
if len(wrapped_target) == 1:
wrapped_target = wrapped_target[0]
return wrapped_target
def classification_wrapper_factory(dataset, target_keys):
return identity_wrapper_factory(dataset, target_keys)
for dataset_cls in [
datasets.Caltech256,
datasets.CIFAR10,
datasets.CIFAR100,
datasets.ImageNet,
datasets.MNIST,
datasets.FashionMNIST,
datasets.GTSRB,
datasets.DatasetFolder,
datasets.ImageFolder,
datasets.Imagenette,
]:
WRAPPER_FACTORIES.register(dataset_cls)(classification_wrapper_factory)
def segmentation_wrapper_factory(dataset, target_keys):
def wrapper(idx, sample):
image, mask = sample
return image, pil_image_to_mask(mask)
return wrapper
for dataset_cls in [
datasets.VOCSegmentation,
]:
WRAPPER_FACTORIES.register(dataset_cls)(segmentation_wrapper_factory)
def video_classification_wrapper_factory(dataset, target_keys):
if dataset.video_clips.output_format == "THWC":
raise RuntimeError(
f"{type(dataset).__name__} with `output_format='THWC'` is not supported by this wrapper, "
f"since it is not compatible with the transformations. Please use `output_format='TCHW'` instead."
)
def wrapper(idx, sample):
video, audio, label = sample
video = tv_tensors.Video(video)
return video, audio, label
return wrapper
for dataset_cls in [
datasets.HMDB51,
datasets.Kinetics,
datasets.UCF101,
]:
WRAPPER_FACTORIES.register(dataset_cls)(video_classification_wrapper_factory)
@WRAPPER_FACTORIES.register(datasets.Caltech101)
def caltech101_wrapper_factory(dataset, target_keys):
if "annotation" in dataset.target_type:
raise_not_supported("Caltech101 dataset with `target_type=['annotation', ...]`")
return classification_wrapper_factory(dataset, target_keys)
@WRAPPER_FACTORIES.register(datasets.CocoDetection)
def coco_dectection_wrapper_factory(dataset, target_keys):
target_keys = parse_target_keys(
target_keys,
available={
# native
"segmentation",
"area",
"iscrowd",
"image_id",
"bbox",
"category_id",
# added by the wrapper
"boxes",
"masks",
"labels",
},
default={"image_id", "boxes", "labels"},
)
def segmentation_to_mask(segmentation, *, canvas_size):
from pycocotools import mask
if isinstance(segmentation, dict):
# if counts is a string, it is already an encoded RLE mask
if not isinstance(segmentation["counts"], str):
segmentation = mask.frPyObjects(segmentation, *canvas_size)
elif isinstance(segmentation, list):
segmentation = mask.merge(mask.frPyObjects(segmentation, *canvas_size))
else:
raise ValueError(f"COCO segmentation expected to be a dict or a list, got {type(segmentation)}")
return torch.from_numpy(mask.decode(segmentation))
def wrapper(idx, sample):
image_id = dataset.ids[idx]
image, target = sample
if not target:
return image, dict(image_id=image_id)
canvas_size = tuple(F.get_size(image))
batched_target = list_of_dicts_to_dict_of_lists(target)
target = {}
if "image_id" in target_keys:
target["image_id"] = image_id
if "boxes" in target_keys:
target["boxes"] = F.convert_bounding_box_format(
tv_tensors.BoundingBoxes(
batched_target["bbox"],
format=tv_tensors.BoundingBoxFormat.XYWH,
canvas_size=canvas_size,
),
new_format=tv_tensors.BoundingBoxFormat.XYXY,
)
if "masks" in target_keys:
target["masks"] = tv_tensors.Mask(
torch.stack(
[
segmentation_to_mask(segmentation, canvas_size=canvas_size)
for segmentation in batched_target["segmentation"]
]
),
)
if "labels" in target_keys:
target["labels"] = torch.tensor(batched_target["category_id"])
for target_key in target_keys - {"image_id", "boxes", "masks", "labels"}:
target[target_key] = batched_target[target_key]
return image, target
return wrapper
WRAPPER_FACTORIES.register(datasets.CocoCaptions)(identity_wrapper_factory)
VOC_DETECTION_CATEGORIES = [
"__background__",
"aeroplane",
"bicycle",
"bird",
"boat",
"bottle",
"bus",
"car",
"cat",
"chair",
"cow",
"diningtable",
"dog",
"horse",
"motorbike",
"person",
"pottedplant",
"sheep",
"sofa",
"train",
"tvmonitor",
]
VOC_DETECTION_CATEGORY_TO_IDX = dict(zip(VOC_DETECTION_CATEGORIES, range(len(VOC_DETECTION_CATEGORIES))))
@WRAPPER_FACTORIES.register(datasets.VOCDetection)
def voc_detection_wrapper_factory(dataset, target_keys):
target_keys = parse_target_keys(
target_keys,
available={
# native
"annotation",
# added by the wrapper
"boxes",
"labels",
},
default={"boxes", "labels"},
)
def wrapper(idx, sample):
image, target = sample
batched_instances = list_of_dicts_to_dict_of_lists(target["annotation"]["object"])
if "annotation" not in target_keys:
target = {}
if "boxes" in target_keys:
target["boxes"] = tv_tensors.BoundingBoxes(
[
[int(bndbox[part]) for part in ("xmin", "ymin", "xmax", "ymax")]
for bndbox in batched_instances["bndbox"]
],
format=tv_tensors.BoundingBoxFormat.XYXY,
canvas_size=(image.height, image.width),
)
if "labels" in target_keys:
target["labels"] = torch.tensor(
[VOC_DETECTION_CATEGORY_TO_IDX[category] for category in batched_instances["name"]]
)
return image, target
return wrapper
@WRAPPER_FACTORIES.register(datasets.SBDataset)
def sbd_wrapper(dataset, target_keys):
if dataset.mode == "boundaries":
raise_not_supported("SBDataset with mode='boundaries'")
return segmentation_wrapper_factory(dataset, target_keys)
@WRAPPER_FACTORIES.register(datasets.CelebA)
def celeba_wrapper_factory(dataset, target_keys):
if any(target_type in dataset.target_type for target_type in ["attr", "landmarks"]):
raise_not_supported("`CelebA` dataset with `target_type=['attr', 'landmarks', ...]`")
def wrapper(idx, sample):
image, target = sample
target = wrap_target_by_type(
target,
target_types=dataset.target_type,
type_wrappers={
"bbox": lambda item: F.convert_bounding_box_format(
tv_tensors.BoundingBoxes(
item,
format=tv_tensors.BoundingBoxFormat.XYWH,
canvas_size=(image.height, image.width),
),
new_format=tv_tensors.BoundingBoxFormat.XYXY,
),
},
)
return image, target
return wrapper
KITTI_CATEGORIES = ["Car", "Van", "Truck", "Pedestrian", "Person_sitting", "Cyclist", "Tram", "Misc", "DontCare"]
KITTI_CATEGORY_TO_IDX = dict(zip(KITTI_CATEGORIES, range(len(KITTI_CATEGORIES))))
@WRAPPER_FACTORIES.register(datasets.Kitti)
def kitti_wrapper_factory(dataset, target_keys):
target_keys = parse_target_keys(
target_keys,
available={
# native
"type",
"truncated",
"occluded",
"alpha",
"bbox",
"dimensions",
"location",
"rotation_y",
# added by the wrapper
"boxes",
"labels",
},
default={"boxes", "labels"},
)
def wrapper(idx, sample):
image, target = sample
if target is None:
return image, target
batched_target = list_of_dicts_to_dict_of_lists(target)
target = {}
if "boxes" in target_keys:
target["boxes"] = tv_tensors.BoundingBoxes(
batched_target["bbox"],
format=tv_tensors.BoundingBoxFormat.XYXY,
canvas_size=(image.height, image.width),
)
if "labels" in target_keys:
target["labels"] = torch.tensor([KITTI_CATEGORY_TO_IDX[category] for category in batched_target["type"]])
for target_key in target_keys - {"boxes", "labels"}:
target[target_key] = batched_target[target_key]
return image, target
return wrapper
@WRAPPER_FACTORIES.register(datasets.OxfordIIITPet)
def oxford_iiit_pet_wrapper_factor(dataset, target_keys):
def wrapper(idx, sample):
image, target = sample
if target is not None:
target = wrap_target_by_type(
target,
target_types=dataset._target_types,
type_wrappers={
"segmentation": pil_image_to_mask,
},
)
return image, target
return wrapper
@WRAPPER_FACTORIES.register(datasets.Cityscapes)
def cityscapes_wrapper_factory(dataset, target_keys):
if any(target_type in dataset.target_type for target_type in ["polygon", "color"]):
raise_not_supported("`Cityscapes` dataset with `target_type=['polygon', 'color', ...]`")
def instance_segmentation_wrapper(mask):
# See https://github.com/mcordts/cityscapesScripts/blob/8da5dd00c9069058ccc134654116aac52d4f6fa2/cityscapesscripts/preparation/json2instanceImg.py#L7-L21
data = pil_image_to_mask(mask)
masks = []
labels = []
for id in data.unique():
masks.append(data == id)
label = id
if label >= 1_000:
label //= 1_000
labels.append(label)
return dict(masks=tv_tensors.Mask(torch.stack(masks)), labels=torch.stack(labels))
def wrapper(idx, sample):
image, target = sample
target = wrap_target_by_type(
target,
target_types=dataset.target_type,
type_wrappers={
"instance": instance_segmentation_wrapper,
"semantic": pil_image_to_mask,
},
)
return image, target
return wrapper
@WRAPPER_FACTORIES.register(datasets.WIDERFace)
def widerface_wrapper(dataset, target_keys):
target_keys = parse_target_keys(
target_keys,
available={
"bbox",
"blur",
"expression",
"illumination",
"occlusion",
"pose",
"invalid",
},
default="all",
)
def wrapper(idx, sample):
image, target = sample
if target is None:
return image, target
target = {key: target[key] for key in target_keys}
if "bbox" in target_keys:
target["bbox"] = F.convert_bounding_box_format(
tv_tensors.BoundingBoxes(
target["bbox"], format=tv_tensors.BoundingBoxFormat.XYWH, canvas_size=(image.height, image.width)
),
new_format=tv_tensors.BoundingBoxFormat.XYXY,
)
return image, target
return wrapper