Shortcuts

Source code for torchvision.transforms.v2.functional._geometry

import math
import numbers
import warnings
from typing import Any, List, Optional, Sequence, Tuple, Union

import PIL.Image
import torch
from torch.nn.functional import grid_sample, interpolate, pad as torch_pad

from torchvision import tv_tensors
from torchvision.transforms import _functional_pil as _FP
from torchvision.transforms._functional_tensor import _pad_symmetric
from torchvision.transforms.functional import (
    _compute_resized_output_size as __compute_resized_output_size,
    _get_perspective_coeffs,
    _interpolation_modes_from_int,
    InterpolationMode,
    pil_modes_mapping,
    pil_to_tensor,
    to_pil_image,
)

from torchvision.utils import _log_api_usage_once

from ._meta import _get_size_image_pil, clamp_bounding_boxes, convert_bounding_box_format

from ._utils import _FillTypeJIT, _get_kernel, _register_five_ten_crop_kernel_internal, _register_kernel_internal


def _check_interpolation(interpolation: Union[InterpolationMode, int]) -> InterpolationMode:
    if isinstance(interpolation, int):
        interpolation = _interpolation_modes_from_int(interpolation)
    elif not isinstance(interpolation, InterpolationMode):
        raise ValueError(
            f"Argument interpolation should be an `InterpolationMode` or a corresponding Pillow integer constant, "
            f"but got {interpolation}."
        )
    return interpolation


[docs]def horizontal_flip(inpt: torch.Tensor) -> torch.Tensor: """See :class:`~torchvision.transforms.v2.RandomHorizontalFlip` for details.""" if torch.jit.is_scripting(): return horizontal_flip_image(inpt) _log_api_usage_once(horizontal_flip) kernel = _get_kernel(horizontal_flip, type(inpt)) return kernel(inpt)
@_register_kernel_internal(horizontal_flip, torch.Tensor) @_register_kernel_internal(horizontal_flip, tv_tensors.Image) def horizontal_flip_image(image: torch.Tensor) -> torch.Tensor: return image.flip(-1) @_register_kernel_internal(horizontal_flip, PIL.Image.Image) def _horizontal_flip_image_pil(image: PIL.Image.Image) -> PIL.Image.Image: return _FP.hflip(image) @_register_kernel_internal(horizontal_flip, tv_tensors.Mask) def horizontal_flip_mask(mask: torch.Tensor) -> torch.Tensor: return horizontal_flip_image(mask) def horizontal_flip_bounding_boxes( bounding_boxes: torch.Tensor, format: tv_tensors.BoundingBoxFormat, canvas_size: Tuple[int, int] ) -> torch.Tensor: shape = bounding_boxes.shape bounding_boxes = bounding_boxes.clone().reshape(-1, 4) if format == tv_tensors.BoundingBoxFormat.XYXY: bounding_boxes[:, [2, 0]] = bounding_boxes[:, [0, 2]].sub_(canvas_size[1]).neg_() elif format == tv_tensors.BoundingBoxFormat.XYWH: bounding_boxes[:, 0].add_(bounding_boxes[:, 2]).sub_(canvas_size[1]).neg_() else: # format == tv_tensors.BoundingBoxFormat.CXCYWH: bounding_boxes[:, 0].sub_(canvas_size[1]).neg_() return bounding_boxes.reshape(shape) @_register_kernel_internal(horizontal_flip, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False) def _horizontal_flip_bounding_boxes_dispatch(inpt: tv_tensors.BoundingBoxes) -> tv_tensors.BoundingBoxes: output = horizontal_flip_bounding_boxes( inpt.as_subclass(torch.Tensor), format=inpt.format, canvas_size=inpt.canvas_size ) return tv_tensors.wrap(output, like=inpt) @_register_kernel_internal(horizontal_flip, tv_tensors.Video) def horizontal_flip_video(video: torch.Tensor) -> torch.Tensor: return horizontal_flip_image(video)
[docs]def vertical_flip(inpt: torch.Tensor) -> torch.Tensor: """See :class:`~torchvision.transforms.v2.RandomVerticalFlip` for details.""" if torch.jit.is_scripting(): return vertical_flip_image(inpt) _log_api_usage_once(vertical_flip) kernel = _get_kernel(vertical_flip, type(inpt)) return kernel(inpt)
@_register_kernel_internal(vertical_flip, torch.Tensor) @_register_kernel_internal(vertical_flip, tv_tensors.Image) def vertical_flip_image(image: torch.Tensor) -> torch.Tensor: return image.flip(-2) @_register_kernel_internal(vertical_flip, PIL.Image.Image) def _vertical_flip_image_pil(image: PIL.Image) -> PIL.Image: return _FP.vflip(image) @_register_kernel_internal(vertical_flip, tv_tensors.Mask) def vertical_flip_mask(mask: torch.Tensor) -> torch.Tensor: return vertical_flip_image(mask) def vertical_flip_bounding_boxes( bounding_boxes: torch.Tensor, format: tv_tensors.BoundingBoxFormat, canvas_size: Tuple[int, int] ) -> torch.Tensor: shape = bounding_boxes.shape bounding_boxes = bounding_boxes.clone().reshape(-1, 4) if format == tv_tensors.BoundingBoxFormat.XYXY: bounding_boxes[:, [1, 3]] = bounding_boxes[:, [3, 1]].sub_(canvas_size[0]).neg_() elif format == tv_tensors.BoundingBoxFormat.XYWH: bounding_boxes[:, 1].add_(bounding_boxes[:, 3]).sub_(canvas_size[0]).neg_() else: # format == tv_tensors.BoundingBoxFormat.CXCYWH: bounding_boxes[:, 1].sub_(canvas_size[0]).neg_() return bounding_boxes.reshape(shape) @_register_kernel_internal(vertical_flip, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False) def _vertical_flip_bounding_boxes_dispatch(inpt: tv_tensors.BoundingBoxes) -> tv_tensors.BoundingBoxes: output = vertical_flip_bounding_boxes( inpt.as_subclass(torch.Tensor), format=inpt.format, canvas_size=inpt.canvas_size ) return tv_tensors.wrap(output, like=inpt) @_register_kernel_internal(vertical_flip, tv_tensors.Video) def vertical_flip_video(video: torch.Tensor) -> torch.Tensor: return vertical_flip_image(video) # We changed the names to align them with the transforms, i.e. `RandomHorizontalFlip`. Still, `hflip` and `vflip` are # prevalent and well understood. Thus, we just alias them without deprecating the old names. hflip = horizontal_flip vflip = vertical_flip def _compute_resized_output_size( canvas_size: Tuple[int, int], size: List[int], max_size: Optional[int] = None ) -> List[int]: if isinstance(size, int): size = [size] elif max_size is not None and len(size) != 1: raise ValueError( "max_size should only be passed if size specifies the length of the smaller edge, " "i.e. size should be an int or a sequence of length 1 in torchscript mode." ) return __compute_resized_output_size(canvas_size, size=size, max_size=max_size)
[docs]def resize( inpt: torch.Tensor, size: List[int], interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR, max_size: Optional[int] = None, antialias: Optional[bool] = True, ) -> torch.Tensor: """See :class:`~torchvision.transforms.v2.Resize` for details.""" if torch.jit.is_scripting(): return resize_image(inpt, size=size, interpolation=interpolation, max_size=max_size, antialias=antialias) _log_api_usage_once(resize) kernel = _get_kernel(resize, type(inpt)) return kernel(inpt, size=size, interpolation=interpolation, max_size=max_size, antialias=antialias)
# This is an internal helper method for resize_image. We should put it here instead of keeping it # inside resize_image due to torchscript. # uint8 dtype support for bilinear and bicubic is limited to cpu and # according to our benchmarks on eager, non-AVX CPUs should still prefer u8->f32->interpolate->u8 path for bilinear def _do_native_uint8_resize_on_cpu(interpolation: InterpolationMode) -> bool: if interpolation == InterpolationMode.BILINEAR: if torch._dynamo.is_compiling(): return True else: return "AVX2" in torch.backends.cpu.get_cpu_capability() return interpolation == InterpolationMode.BICUBIC @_register_kernel_internal(resize, torch.Tensor) @_register_kernel_internal(resize, tv_tensors.Image) def resize_image( image: torch.Tensor, size: List[int], interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR, max_size: Optional[int] = None, antialias: Optional[bool] = True, ) -> torch.Tensor: interpolation = _check_interpolation(interpolation) antialias = False if antialias is None else antialias align_corners: Optional[bool] = None if interpolation == InterpolationMode.BILINEAR or interpolation == InterpolationMode.BICUBIC: align_corners = False else: # The default of antialias is True from 0.17, so we don't warn or # error if other interpolation modes are used. This is documented. antialias = False shape = image.shape numel = image.numel() num_channels, old_height, old_width = shape[-3:] new_height, new_width = _compute_resized_output_size((old_height, old_width), size=size, max_size=max_size) if (new_height, new_width) == (old_height, old_width): return image elif numel > 0: dtype = image.dtype acceptable_dtypes = [torch.float32, torch.float64] if interpolation == InterpolationMode.NEAREST or interpolation == InterpolationMode.NEAREST_EXACT: # uint8 dtype can be included for cpu and cuda input if nearest mode acceptable_dtypes.append(torch.uint8) elif image.device.type == "cpu": if _do_native_uint8_resize_on_cpu(interpolation): acceptable_dtypes.append(torch.uint8) image = image.reshape(-1, num_channels, old_height, old_width) strides = image.stride() if image.is_contiguous(memory_format=torch.channels_last) and image.shape[0] == 1 and numel != strides[0]: # There is a weird behaviour in torch core where the output tensor of `interpolate()` can be allocated as # contiguous even though the input is un-ambiguously channels_last (https://github.com/pytorch/pytorch/issues/68430). # In particular this happens for the typical torchvision use-case of single CHW images where we fake the batch dim # to become 1CHW. Below, we restride those tensors to trick torch core into properly allocating the output as # channels_last, thus preserving the memory format of the input. This is not just for format consistency: # for uint8 bilinear images, this also avoids an extra copy (re-packing) of the output and saves time. # TODO: when https://github.com/pytorch/pytorch/issues/68430 is fixed (possibly by https://github.com/pytorch/pytorch/pull/100373), # we should be able to remove this hack. new_strides = list(strides) new_strides[0] = numel image = image.as_strided((1, num_channels, old_height, old_width), new_strides) need_cast = dtype not in acceptable_dtypes if need_cast: image = image.to(dtype=torch.float32) image = interpolate( image, size=[new_height, new_width], mode=interpolation.value, align_corners=align_corners, antialias=antialias, ) if need_cast: if interpolation == InterpolationMode.BICUBIC and dtype == torch.uint8: # This path is hit on non-AVX archs, or on GPU. image = image.clamp_(min=0, max=255) if dtype in (torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64): image = image.round_() image = image.to(dtype=dtype) return image.reshape(shape[:-3] + (num_channels, new_height, new_width)) def _resize_image_pil( image: PIL.Image.Image, size: Union[Sequence[int], int], interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR, max_size: Optional[int] = None, ) -> PIL.Image.Image: old_height, old_width = image.height, image.width new_height, new_width = _compute_resized_output_size( (old_height, old_width), size=size, # type: ignore[arg-type] max_size=max_size, ) interpolation = _check_interpolation(interpolation) if (new_height, new_width) == (old_height, old_width): return image return image.resize((new_width, new_height), resample=pil_modes_mapping[interpolation]) @_register_kernel_internal(resize, PIL.Image.Image) def __resize_image_pil_dispatch( image: PIL.Image.Image, size: Union[Sequence[int], int], interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR, max_size: Optional[int] = None, antialias: Optional[bool] = True, ) -> PIL.Image.Image: if antialias is False: warnings.warn("Anti-alias option is always applied for PIL Image input. Argument antialias is ignored.") return _resize_image_pil(image, size=size, interpolation=interpolation, max_size=max_size) def resize_mask(mask: torch.Tensor, size: List[int], max_size: Optional[int] = None) -> torch.Tensor: if mask.ndim < 3: mask = mask.unsqueeze(0) needs_squeeze = True else: needs_squeeze = False output = resize_image(mask, size=size, interpolation=InterpolationMode.NEAREST, max_size=max_size) if needs_squeeze: output = output.squeeze(0) return output @_register_kernel_internal(resize, tv_tensors.Mask, tv_tensor_wrapper=False) def _resize_mask_dispatch( inpt: tv_tensors.Mask, size: List[int], max_size: Optional[int] = None, **kwargs: Any ) -> tv_tensors.Mask: output = resize_mask(inpt.as_subclass(torch.Tensor), size, max_size=max_size) return tv_tensors.wrap(output, like=inpt) def resize_bounding_boxes( bounding_boxes: torch.Tensor, canvas_size: Tuple[int, int], size: List[int], max_size: Optional[int] = None ) -> Tuple[torch.Tensor, Tuple[int, int]]: old_height, old_width = canvas_size new_height, new_width = _compute_resized_output_size(canvas_size, size=size, max_size=max_size) if (new_height, new_width) == (old_height, old_width): return bounding_boxes, canvas_size w_ratio = new_width / old_width h_ratio = new_height / old_height ratios = torch.tensor([w_ratio, h_ratio, w_ratio, h_ratio], device=bounding_boxes.device) return ( bounding_boxes.mul(ratios).to(bounding_boxes.dtype), (new_height, new_width), ) @_register_kernel_internal(resize, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False) def _resize_bounding_boxes_dispatch( inpt: tv_tensors.BoundingBoxes, size: List[int], max_size: Optional[int] = None, **kwargs: Any ) -> tv_tensors.BoundingBoxes: output, canvas_size = resize_bounding_boxes( inpt.as_subclass(torch.Tensor), inpt.canvas_size, size, max_size=max_size ) return tv_tensors.wrap(output, like=inpt, canvas_size=canvas_size) @_register_kernel_internal(resize, tv_tensors.Video) def resize_video( video: torch.Tensor, size: List[int], interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR, max_size: Optional[int] = None, antialias: Optional[bool] = True, ) -> torch.Tensor: return resize_image(video, size=size, interpolation=interpolation, max_size=max_size, antialias=antialias)
[docs]def affine( inpt: torch.Tensor, angle: Union[int, float], translate: List[float], scale: float, shear: List[float], interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST, fill: _FillTypeJIT = None, center: Optional[List[float]] = None, ) -> torch.Tensor: """See :class:`~torchvision.transforms.v2.RandomAffine` for details.""" if torch.jit.is_scripting(): return affine_image( inpt, angle=angle, translate=translate, scale=scale, shear=shear, interpolation=interpolation, fill=fill, center=center, ) _log_api_usage_once(affine) kernel = _get_kernel(affine, type(inpt)) return kernel( inpt, angle=angle, translate=translate, scale=scale, shear=shear, interpolation=interpolation, fill=fill, center=center, )
def _affine_parse_args( angle: Union[int, float], translate: List[float], scale: float, shear: List[float], interpolation: InterpolationMode = InterpolationMode.NEAREST, center: Optional[List[float]] = None, ) -> Tuple[float, List[float], List[float], Optional[List[float]]]: if not isinstance(angle, (int, float)): raise TypeError("Argument angle should be int or float") if not isinstance(translate, (list, tuple)): raise TypeError("Argument translate should be a sequence") if len(translate) != 2: raise ValueError("Argument translate should be a sequence of length 2") if scale <= 0.0: raise ValueError("Argument scale should be positive") if not isinstance(shear, (numbers.Number, (list, tuple))): raise TypeError("Shear should be either a single value or a sequence of two values") if not isinstance(interpolation, InterpolationMode): raise TypeError("Argument interpolation should be a InterpolationMode") if isinstance(angle, int): angle = float(angle) if isinstance(translate, tuple): translate = list(translate) if isinstance(shear, numbers.Number): shear = [shear, 0.0] if isinstance(shear, tuple): shear = list(shear) if len(shear) == 1: shear = [shear[0], shear[0]] if len(shear) != 2: raise ValueError(f"Shear should be a sequence containing two values. Got {shear}") if center is not None: if not isinstance(center, (list, tuple)): raise TypeError("Argument center should be a sequence") else: center = [float(c) for c in center] return angle, translate, shear, center def _get_inverse_affine_matrix( center: List[float], angle: float, translate: List[float], scale: float, shear: List[float], inverted: bool = True ) -> List[float]: # Helper method to compute inverse matrix for affine transformation # Pillow requires inverse affine transformation matrix: # Affine matrix is : M = T * C * RotateScaleShear * C^-1 # # where T is translation matrix: [1, 0, tx | 0, 1, ty | 0, 0, 1] # C is translation matrix to keep center: [1, 0, cx | 0, 1, cy | 0, 0, 1] # RotateScaleShear is rotation with scale and shear matrix # # RotateScaleShear(a, s, (sx, sy)) = # = R(a) * S(s) * SHy(sy) * SHx(sx) # = [ s*cos(a - sy)/cos(sy), s*(-cos(a - sy)*tan(sx)/cos(sy) - sin(a)), 0 ] # [ s*sin(a - sy)/cos(sy), s*(-sin(a - sy)*tan(sx)/cos(sy) + cos(a)), 0 ] # [ 0 , 0 , 1 ] # where R is a rotation matrix, S is a scaling matrix, and SHx and SHy are the shears: # SHx(s) = [1, -tan(s)] and SHy(s) = [1 , 0] # [0, 1 ] [-tan(s), 1] # # Thus, the inverse is M^-1 = C * RotateScaleShear^-1 * C^-1 * T^-1 rot = math.radians(angle) sx = math.radians(shear[0]) sy = math.radians(shear[1]) cx, cy = center tx, ty = translate # Cached results cos_sy = math.cos(sy) tan_sx = math.tan(sx) rot_minus_sy = rot - sy cx_plus_tx = cx + tx cy_plus_ty = cy + ty # Rotate Scale Shear (RSS) without scaling a = math.cos(rot_minus_sy) / cos_sy b = -(a * tan_sx + math.sin(rot)) c = math.sin(rot_minus_sy) / cos_sy d = math.cos(rot) - c * tan_sx if inverted: # Inverted rotation matrix with scale and shear # det([[a, b], [c, d]]) == 1, since det(rotation) = 1 and det(shear) = 1 matrix = [d / scale, -b / scale, 0.0, -c / scale, a / scale, 0.0] # Apply inverse of translation and of center translation: RSS^-1 * C^-1 * T^-1 # and then apply center translation: C * RSS^-1 * C^-1 * T^-1 matrix[2] += cx - matrix[0] * cx_plus_tx - matrix[1] * cy_plus_ty matrix[5] += cy - matrix[3] * cx_plus_tx - matrix[4] * cy_plus_ty else: matrix = [a * scale, b * scale, 0.0, c * scale, d * scale, 0.0] # Apply inverse of center translation: RSS * C^-1 # and then apply translation and center : T * C * RSS * C^-1 matrix[2] += cx_plus_tx - matrix[0] * cx - matrix[1] * cy matrix[5] += cy_plus_ty - matrix[3] * cx - matrix[4] * cy return matrix def _compute_affine_output_size(matrix: List[float], w: int, h: int) -> Tuple[int, int]: if torch._dynamo.is_compiling() and not torch.jit.is_scripting(): return _compute_affine_output_size_python(matrix, w, h) else: return _compute_affine_output_size_tensor(matrix, w, h) def _compute_affine_output_size_tensor(matrix: List[float], w: int, h: int) -> Tuple[int, int]: # Inspired of PIL implementation: # https://github.com/python-pillow/Pillow/blob/11de3318867e4398057373ee9f12dcb33db7335c/src/PIL/Image.py#L2054 # pts are Top-Left, Top-Right, Bottom-Left, Bottom-Right points. # Points are shifted due to affine matrix torch convention about # the center point. Center is (0, 0) for image center pivot point (w * 0.5, h * 0.5) half_w = 0.5 * w half_h = 0.5 * h pts = torch.tensor( [ [-half_w, -half_h, 1.0], [-half_w, half_h, 1.0], [half_w, half_h, 1.0], [half_w, -half_h, 1.0], ] ) theta = torch.tensor(matrix, dtype=torch.float).view(2, 3) new_pts = torch.matmul(pts, theta.T) min_vals, max_vals = new_pts.aminmax(dim=0) # shift points to [0, w] and [0, h] interval to match PIL results halfs = torch.tensor((half_w, half_h)) min_vals.add_(halfs) max_vals.add_(halfs) # Truncate precision to 1e-4 to avoid ceil of Xe-15 to 1.0 tol = 1e-4 inv_tol = 1.0 / tol cmax = max_vals.mul_(inv_tol).trunc_().mul_(tol).ceil_() cmin = min_vals.mul_(inv_tol).trunc_().mul_(tol).floor_() size = cmax.sub_(cmin) return int(size[0]), int(size[1]) # w, h def _compute_affine_output_size_python(matrix: List[float], w: int, h: int) -> Tuple[int, int]: # Mostly copied from PIL implementation: # The only difference is with transformed points as input matrix has zero translation part here and # PIL has a centered translation part. # https://github.com/python-pillow/Pillow/blob/11de3318867e4398057373ee9f12dcb33db7335c/src/PIL/Image.py#L2054 a, b, c, d, e, f = matrix xx = [] yy = [] half_w = 0.5 * w half_h = 0.5 * h for x, y in ((-half_w, -half_h), (half_w, -half_h), (half_w, half_h), (-half_w, half_h)): nx = a * x + b * y + c ny = d * x + e * y + f xx.append(nx + half_w) yy.append(ny + half_h) nw = math.ceil(max(xx)) - math.floor(min(xx)) nh = math.ceil(max(yy)) - math.floor(min(yy)) return int(nw), int(nh) # w, h def _apply_grid_transform(img: torch.Tensor, grid: torch.Tensor, mode: str, fill: _FillTypeJIT) -> torch.Tensor: input_shape = img.shape output_height, output_width = grid.shape[1], grid.shape[2] num_channels, input_height, input_width = input_shape[-3:] output_shape = input_shape[:-3] + (num_channels, output_height, output_width) if img.numel() == 0: return img.reshape(output_shape) img = img.reshape(-1, num_channels, input_height, input_width) squashed_batch_size = img.shape[0] # We are using context knowledge that grid should have float dtype fp = img.dtype == grid.dtype float_img = img if fp else img.to(grid.dtype) if squashed_batch_size > 1: # Apply same grid to a batch of images grid = grid.expand(squashed_batch_size, -1, -1, -1) # Append a dummy mask for customized fill colors, should be faster than grid_sample() twice if fill is not None: mask = torch.ones( (squashed_batch_size, 1, input_height, input_width), dtype=float_img.dtype, device=float_img.device ) float_img = torch.cat((float_img, mask), dim=1) float_img = grid_sample(float_img, grid, mode=mode, padding_mode="zeros", align_corners=False) # Fill with required color if fill is not None: float_img, mask = torch.tensor_split(float_img, indices=(-1,), dim=-3) mask = mask.expand_as(float_img) fill_list = fill if isinstance(fill, (tuple, list)) else [float(fill)] # type: ignore[arg-type] fill_img = torch.tensor(fill_list, dtype=float_img.dtype, device=float_img.device).view(1, -1, 1, 1) if mode == "nearest": float_img = torch.where(mask < 0.5, fill_img.expand_as(float_img), float_img) else: # 'bilinear' # The following is mathematically equivalent to: # img * mask + (1.0 - mask) * fill = img * mask - fill * mask + fill = mask * (img - fill) + fill float_img = float_img.sub_(fill_img).mul_(mask).add_(fill_img) img = float_img.round_().to(img.dtype) if not fp else float_img return img.reshape(output_shape) def _assert_grid_transform_inputs( image: torch.Tensor, matrix: Optional[List[float]], interpolation: str, fill: _FillTypeJIT, supported_interpolation_modes: List[str], coeffs: Optional[List[float]] = None, ) -> None: if matrix is not None: if not isinstance(matrix, list): raise TypeError("Argument matrix should be a list") elif len(matrix) != 6: raise ValueError("Argument matrix should have 6 float values") if coeffs is not None and len(coeffs) != 8: raise ValueError("Argument coeffs should have 8 float values") if fill is not None: if isinstance(fill, (tuple, list)): length = len(fill) num_channels = image.shape[-3] if length > 1 and length != num_channels: raise ValueError( "The number of elements in 'fill' cannot broadcast to match the number of " f"channels of the image ({length} != {num_channels})" ) elif not isinstance(fill, (int, float)): raise ValueError("Argument fill should be either int, float, tuple or list") if interpolation not in supported_interpolation_modes: raise ValueError(f"Interpolation mode '{interpolation}' is unsupported with Tensor input") def _affine_grid( theta: torch.Tensor, w: int, h: int, ow: int, oh: int, ) -> torch.Tensor: # https://github.com/pytorch/pytorch/blob/74b65c32be68b15dc7c9e8bb62459efbfbde33d8/aten/src/ATen/native/ # AffineGridGenerator.cpp#L18 # Difference with AffineGridGenerator is that: # 1) we normalize grid values after applying theta # 2) we can normalize by other image size, such that it covers "extend" option like in PIL.Image.rotate dtype = theta.dtype device = theta.device base_grid = torch.empty(1, oh, ow, 3, dtype=dtype, device=device) x_grid = torch.linspace((1.0 - ow) * 0.5, (ow - 1.0) * 0.5, steps=ow, device=device) base_grid[..., 0].copy_(x_grid) y_grid = torch.linspace((1.0 - oh) * 0.5, (oh - 1.0) * 0.5, steps=oh, device=device).unsqueeze_(-1) base_grid[..., 1].copy_(y_grid) base_grid[..., 2].fill_(1) rescaled_theta = theta.transpose(1, 2).div_(torch.tensor([0.5 * w, 0.5 * h], dtype=dtype, device=device)) output_grid = base_grid.view(1, oh * ow, 3).bmm(rescaled_theta) return output_grid.view(1, oh, ow, 2) @_register_kernel_internal(affine, torch.Tensor) @_register_kernel_internal(affine, tv_tensors.Image) def affine_image( image: torch.Tensor, angle: Union[int, float], translate: List[float], scale: float, shear: List[float], interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST, fill: _FillTypeJIT = None, center: Optional[List[float]] = None, ) -> torch.Tensor: interpolation = _check_interpolation(interpolation) angle, translate, shear, center = _affine_parse_args(angle, translate, scale, shear, interpolation, center) height, width = image.shape[-2:] center_f = [0.0, 0.0] if center is not None: # Center values should be in pixel coordinates but translated such that (0, 0) corresponds to image center. center_f = [(c - s * 0.5) for c, s in zip(center, [width, height])] translate_f = [float(t) for t in translate] matrix = _get_inverse_affine_matrix(center_f, angle, translate_f, scale, shear) _assert_grid_transform_inputs(image, matrix, interpolation.value, fill, ["nearest", "bilinear"]) dtype = image.dtype if torch.is_floating_point(image) else torch.float32 theta = torch.tensor(matrix, dtype=dtype, device=image.device).reshape(1, 2, 3) grid = _affine_grid(theta, w=width, h=height, ow=width, oh=height) return _apply_grid_transform(image, grid, interpolation.value, fill=fill) @_register_kernel_internal(affine, PIL.Image.Image) def _affine_image_pil( image: PIL.Image.Image, angle: Union[int, float], translate: List[float], scale: float, shear: List[float], interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST, fill: _FillTypeJIT = None, center: Optional[List[float]] = None, ) -> PIL.Image.Image: interpolation = _check_interpolation(interpolation) angle, translate, shear, center = _affine_parse_args(angle, translate, scale, shear, interpolation, center) # center = (img_size[0] * 0.5 + 0.5, img_size[1] * 0.5 + 0.5) # it is visually better to estimate the center without 0.5 offset # otherwise image rotated by 90 degrees is shifted vs output image of torch.rot90 or F_t.affine if center is None: height, width = _get_size_image_pil(image) center = [width * 0.5, height * 0.5] matrix = _get_inverse_affine_matrix(center, angle, translate, scale, shear) return _FP.affine(image, matrix, interpolation=pil_modes_mapping[interpolation], fill=fill) def _affine_bounding_boxes_with_expand( bounding_boxes: torch.Tensor, format: tv_tensors.BoundingBoxFormat, canvas_size: Tuple[int, int], angle: Union[int, float], translate: List[float], scale: float, shear: List[float], center: Optional[List[float]] = None, expand: bool = False, ) -> Tuple[torch.Tensor, Tuple[int, int]]: if bounding_boxes.numel() == 0: return bounding_boxes, canvas_size original_shape = bounding_boxes.shape original_dtype = bounding_boxes.dtype bounding_boxes = bounding_boxes.clone() if bounding_boxes.is_floating_point() else bounding_boxes.float() dtype = bounding_boxes.dtype device = bounding_boxes.device bounding_boxes = ( convert_bounding_box_format( bounding_boxes, old_format=format, new_format=tv_tensors.BoundingBoxFormat.XYXY, inplace=True ) ).reshape(-1, 4) angle, translate, shear, center = _affine_parse_args( angle, translate, scale, shear, InterpolationMode.NEAREST, center ) if center is None: height, width = canvas_size center = [width * 0.5, height * 0.5] affine_vector = _get_inverse_affine_matrix(center, angle, translate, scale, shear, inverted=False) transposed_affine_matrix = ( torch.tensor( affine_vector, dtype=dtype, device=device, ) .reshape(2, 3) .T ) # 1) Let's transform bboxes into a tensor of 4 points (top-left, top-right, bottom-left, bottom-right corners). # Tensor of points has shape (N * 4, 3), where N is the number of bboxes # Single point structure is similar to # [(xmin, ymin, 1), (xmax, ymin, 1), (xmax, ymax, 1), (xmin, ymax, 1)] points = bounding_boxes[:, [[0, 1], [2, 1], [2, 3], [0, 3]]].reshape(-1, 2) points = torch.cat([points, torch.ones(points.shape[0], 1, device=device, dtype=dtype)], dim=-1) # 2) Now let's transform the points using affine matrix transformed_points = torch.matmul(points, transposed_affine_matrix) # 3) Reshape transformed points to [N boxes, 4 points, x/y coords] # and compute bounding box from 4 transformed points: transformed_points = transformed_points.reshape(-1, 4, 2) out_bbox_mins, out_bbox_maxs = torch.aminmax(transformed_points, dim=1) out_bboxes = torch.cat([out_bbox_mins, out_bbox_maxs], dim=1) if expand: # Compute minimum point for transformed image frame: # Points are Top-Left, Top-Right, Bottom-Left, Bottom-Right points. height, width = canvas_size points = torch.tensor( [ [0.0, 0.0, 1.0], [0.0, float(height), 1.0], [float(width), float(height), 1.0], [float(width), 0.0, 1.0], ], dtype=dtype, device=device, ) new_points = torch.matmul(points, transposed_affine_matrix) tr = torch.amin(new_points, dim=0, keepdim=True) # Translate bounding boxes out_bboxes.sub_(tr.repeat((1, 2))) # Estimate meta-data for image with inverted=True affine_vector = _get_inverse_affine_matrix(center, angle, translate, scale, shear) new_width, new_height = _compute_affine_output_size(affine_vector, width, height) canvas_size = (new_height, new_width) out_bboxes = clamp_bounding_boxes(out_bboxes, format=tv_tensors.BoundingBoxFormat.XYXY, canvas_size=canvas_size) out_bboxes = convert_bounding_box_format( out_bboxes, old_format=tv_tensors.BoundingBoxFormat.XYXY, new_format=format, inplace=True ).reshape(original_shape) out_bboxes = out_bboxes.to(original_dtype) return out_bboxes, canvas_size def affine_bounding_boxes( bounding_boxes: torch.Tensor, format: tv_tensors.BoundingBoxFormat, canvas_size: Tuple[int, int], angle: Union[int, float], translate: List[float], scale: float, shear: List[float], center: Optional[List[float]] = None, ) -> torch.Tensor: out_box, _ = _affine_bounding_boxes_with_expand( bounding_boxes, format=format, canvas_size=canvas_size, angle=angle, translate=translate, scale=scale, shear=shear, center=center, expand=False, ) return out_box @_register_kernel_internal(affine, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False) def _affine_bounding_boxes_dispatch( inpt: tv_tensors.BoundingBoxes, angle: Union[int, float], translate: List[float], scale: float, shear: List[float], center: Optional[List[float]] = None, **kwargs, ) -> tv_tensors.BoundingBoxes: output = affine_bounding_boxes( inpt.as_subclass(torch.Tensor), format=inpt.format, canvas_size=inpt.canvas_size, angle=angle, translate=translate, scale=scale, shear=shear, center=center, ) return tv_tensors.wrap(output, like=inpt) def affine_mask( mask: torch.Tensor, angle: Union[int, float], translate: List[float], scale: float, shear: List[float], fill: _FillTypeJIT = None, center: Optional[List[float]] = None, ) -> torch.Tensor: if mask.ndim < 3: mask = mask.unsqueeze(0) needs_squeeze = True else: needs_squeeze = False output = affine_image( mask, angle=angle, translate=translate, scale=scale, shear=shear, interpolation=InterpolationMode.NEAREST, fill=fill, center=center, ) if needs_squeeze: output = output.squeeze(0) return output @_register_kernel_internal(affine, tv_tensors.Mask, tv_tensor_wrapper=False) def _affine_mask_dispatch( inpt: tv_tensors.Mask, angle: Union[int, float], translate: List[float], scale: float, shear: List[float], fill: _FillTypeJIT = None, center: Optional[List[float]] = None, **kwargs, ) -> tv_tensors.Mask: output = affine_mask( inpt.as_subclass(torch.Tensor), angle=angle, translate=translate, scale=scale, shear=shear, fill=fill, center=center, ) return tv_tensors.wrap(output, like=inpt) @_register_kernel_internal(affine, tv_tensors.Video) def affine_video( video: torch.Tensor, angle: Union[int, float], translate: List[float], scale: float, shear: List[float], interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST, fill: _FillTypeJIT = None, center: Optional[List[float]] = None, ) -> torch.Tensor: return affine_image( video, angle=angle, translate=translate, scale=scale, shear=shear, interpolation=interpolation, fill=fill, center=center, )
[docs]def rotate( inpt: torch.Tensor, angle: float, interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST, expand: bool = False, center: Optional[List[float]] = None, fill: _FillTypeJIT = None, ) -> torch.Tensor: """See :class:`~torchvision.transforms.v2.RandomRotation` for details.""" if torch.jit.is_scripting(): return rotate_image(inpt, angle=angle, interpolation=interpolation, expand=expand, fill=fill, center=center) _log_api_usage_once(rotate) kernel = _get_kernel(rotate, type(inpt)) return kernel(inpt, angle=angle, interpolation=interpolation, expand=expand, fill=fill, center=center)
@_register_kernel_internal(rotate, torch.Tensor) @_register_kernel_internal(rotate, tv_tensors.Image) def rotate_image( image: torch.Tensor, angle: float, interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST, expand: bool = False, center: Optional[List[float]] = None, fill: _FillTypeJIT = None, ) -> torch.Tensor: angle = angle % 360 # shift angle to [0, 360) range # fast path: transpose without affine transform if center is None: if angle == 0: return image.clone() if angle == 180: return torch.rot90(image, k=2, dims=(-2, -1)) if expand or image.shape[-1] == image.shape[-2]: if angle == 90: return torch.rot90(image, k=1, dims=(-2, -1)) if angle == 270: return torch.rot90(image, k=3, dims=(-2, -1)) interpolation = _check_interpolation(interpolation) input_height, input_width = image.shape[-2:] center_f = [0.0, 0.0] if center is not None: # Center values should be in pixel coordinates but translated such that (0, 0) corresponds to image center. center_f = [(c - s * 0.5) for c, s in zip(center, [input_width, input_height])] # due to current incoherence of rotation angle direction between affine and rotate implementations # we need to set -angle. matrix = _get_inverse_affine_matrix(center_f, -angle, [0.0, 0.0], 1.0, [0.0, 0.0]) _assert_grid_transform_inputs(image, matrix, interpolation.value, fill, ["nearest", "bilinear"]) output_width, output_height = ( _compute_affine_output_size(matrix, input_width, input_height) if expand else (input_width, input_height) ) dtype = image.dtype if torch.is_floating_point(image) else torch.float32 theta = torch.tensor(matrix, dtype=dtype, device=image.device).reshape(1, 2, 3) grid = _affine_grid(theta, w=input_width, h=input_height, ow=output_width, oh=output_height) return _apply_grid_transform(image, grid, interpolation.value, fill=fill) @_register_kernel_internal(rotate, PIL.Image.Image) def _rotate_image_pil( image: PIL.Image.Image, angle: float, interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST, expand: bool = False, center: Optional[List[float]] = None, fill: _FillTypeJIT = None, ) -> PIL.Image.Image: interpolation = _check_interpolation(interpolation) return _FP.rotate( image, angle, interpolation=pil_modes_mapping[interpolation], expand=expand, fill=fill, center=center ) def rotate_bounding_boxes( bounding_boxes: torch.Tensor, format: tv_tensors.BoundingBoxFormat, canvas_size: Tuple[int, int], angle: float, expand: bool = False, center: Optional[List[float]] = None, ) -> Tuple[torch.Tensor, Tuple[int, int]]: return _affine_bounding_boxes_with_expand( bounding_boxes, format=format, canvas_size=canvas_size, angle=-angle, translate=[0.0, 0.0], scale=1.0, shear=[0.0, 0.0], center=center, expand=expand, ) @_register_kernel_internal(rotate, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False) def _rotate_bounding_boxes_dispatch( inpt: tv_tensors.BoundingBoxes, angle: float, expand: bool = False, center: Optional[List[float]] = None, **kwargs ) -> tv_tensors.BoundingBoxes: output, canvas_size = rotate_bounding_boxes( inpt.as_subclass(torch.Tensor), format=inpt.format, canvas_size=inpt.canvas_size, angle=angle, expand=expand, center=center, ) return tv_tensors.wrap(output, like=inpt, canvas_size=canvas_size) def rotate_mask( mask: torch.Tensor, angle: float, expand: bool = False, center: Optional[List[float]] = None, fill: _FillTypeJIT = None, ) -> torch.Tensor: if mask.ndim < 3: mask = mask.unsqueeze(0) needs_squeeze = True else: needs_squeeze = False output = rotate_image( mask, angle=angle, expand=expand, interpolation=InterpolationMode.NEAREST, fill=fill, center=center, ) if needs_squeeze: output = output.squeeze(0) return output @_register_kernel_internal(rotate, tv_tensors.Mask, tv_tensor_wrapper=False) def _rotate_mask_dispatch( inpt: tv_tensors.Mask, angle: float, expand: bool = False, center: Optional[List[float]] = None, fill: _FillTypeJIT = None, **kwargs, ) -> tv_tensors.Mask: output = rotate_mask(inpt.as_subclass(torch.Tensor), angle=angle, expand=expand, fill=fill, center=center) return tv_tensors.wrap(output, like=inpt) @_register_kernel_internal(rotate, tv_tensors.Video) def rotate_video( video: torch.Tensor, angle: float, interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST, expand: bool = False, center: Optional[List[float]] = None, fill: _FillTypeJIT = None, ) -> torch.Tensor: return rotate_image(video, angle, interpolation=interpolation, expand=expand, fill=fill, center=center)
[docs]def pad( inpt: torch.Tensor, padding: List[int], fill: Optional[Union[int, float, List[float]]] = None, padding_mode: str = "constant", ) -> torch.Tensor: """See :class:`~torchvision.transforms.v2.Pad` for details.""" if torch.jit.is_scripting(): return pad_image(inpt, padding=padding, fill=fill, padding_mode=padding_mode) _log_api_usage_once(pad) kernel = _get_kernel(pad, type(inpt)) return kernel(inpt, padding=padding, fill=fill, padding_mode=padding_mode)
def _parse_pad_padding(padding: Union[int, List[int]]) -> List[int]: if isinstance(padding, int): pad_left = pad_right = pad_top = pad_bottom = padding elif isinstance(padding, (tuple, list)): if len(padding) == 1: pad_left = pad_right = pad_top = pad_bottom = padding[0] elif len(padding) == 2: pad_left = pad_right = padding[0] pad_top = pad_bottom = padding[1] elif len(padding) == 4: pad_left = padding[0] pad_top = padding[1] pad_right = padding[2] pad_bottom = padding[3] else: raise ValueError( f"Padding must be an int or a 1, 2, or 4 element tuple, not a {len(padding)} element tuple" ) else: raise TypeError(f"`padding` should be an integer or tuple or list of integers, but got {padding}") return [pad_left, pad_right, pad_top, pad_bottom] @_register_kernel_internal(pad, torch.Tensor) @_register_kernel_internal(pad, tv_tensors.Image) def pad_image( image: torch.Tensor, padding: List[int], fill: Optional[Union[int, float, List[float]]] = None, padding_mode: str = "constant", ) -> torch.Tensor: # Be aware that while `padding` has order `[left, top, right, bottom]`, `torch_padding` uses # `[left, right, top, bottom]`. This stems from the fact that we align our API with PIL, but need to use `torch_pad` # internally. torch_padding = _parse_pad_padding(padding) if padding_mode not in ("constant", "edge", "reflect", "symmetric"): raise ValueError( f"`padding_mode` should be either `'constant'`, `'edge'`, `'reflect'` or `'symmetric'`, " f"but got `'{padding_mode}'`." ) if fill is None: fill = 0 if isinstance(fill, (int, float)): return _pad_with_scalar_fill(image, torch_padding, fill=fill, padding_mode=padding_mode) elif len(fill) == 1: return _pad_with_scalar_fill(image, torch_padding, fill=fill[0], padding_mode=padding_mode) else: return _pad_with_vector_fill(image, torch_padding, fill=fill, padding_mode=padding_mode) def _pad_with_scalar_fill( image: torch.Tensor, torch_padding: List[int], fill: Union[int, float], padding_mode: str, ) -> torch.Tensor: shape = image.shape num_channels, height, width = shape[-3:] batch_size = 1 for s in shape[:-3]: batch_size *= s image = image.reshape(batch_size, num_channels, height, width) if padding_mode == "edge": # Similar to the padding order, `torch_pad`'s PIL's padding modes don't have the same names. Thus, we map # the PIL name for the padding mode, which we are also using for our API, to the corresponding `torch_pad` # name. padding_mode = "replicate" if padding_mode == "constant": image = torch_pad(image, torch_padding, mode=padding_mode, value=float(fill)) elif padding_mode in ("reflect", "replicate"): # `torch_pad` only supports `"reflect"` or `"replicate"` padding for floating point inputs. # TODO: See https://github.com/pytorch/pytorch/issues/40763 dtype = image.dtype if not image.is_floating_point(): needs_cast = True image = image.to(torch.float32) else: needs_cast = False image = torch_pad(image, torch_padding, mode=padding_mode) if needs_cast: image = image.to(dtype) else: # padding_mode == "symmetric" image = _pad_symmetric(image, torch_padding) new_height, new_width = image.shape[-2:] return image.reshape(shape[:-3] + (num_channels, new_height, new_width)) # TODO: This should be removed once torch_pad supports non-scalar padding values def _pad_with_vector_fill( image: torch.Tensor, torch_padding: List[int], fill: List[float], padding_mode: str, ) -> torch.Tensor: if padding_mode != "constant": raise ValueError(f"Padding mode '{padding_mode}' is not supported if fill is not scalar") output = _pad_with_scalar_fill(image, torch_padding, fill=0, padding_mode="constant") left, right, top, bottom = torch_padding # We are creating the tensor in the autodetected dtype first and convert to the right one after to avoid an implicit # float -> int conversion. That happens for example for the valid input of a uint8 image with floating point fill # value. fill = torch.tensor(fill, device=image.device).to(dtype=image.dtype).reshape(-1, 1, 1) if top > 0: output[..., :top, :] = fill if left > 0: output[..., :, :left] = fill if bottom > 0: output[..., -bottom:, :] = fill if right > 0: output[..., :, -right:] = fill return output _pad_image_pil = _register_kernel_internal(pad, PIL.Image.Image)(_FP.pad) @_register_kernel_internal(pad, tv_tensors.Mask) def pad_mask( mask: torch.Tensor, padding: List[int], fill: Optional[Union[int, float, List[float]]] = None, padding_mode: str = "constant", ) -> torch.Tensor: if fill is None: fill = 0 if isinstance(fill, (tuple, list)): raise ValueError("Non-scalar fill value is not supported") if mask.ndim < 3: mask = mask.unsqueeze(0) needs_squeeze = True else: needs_squeeze = False output = pad_image(mask, padding=padding, fill=fill, padding_mode=padding_mode) if needs_squeeze: output = output.squeeze(0) return output def pad_bounding_boxes( bounding_boxes: torch.Tensor, format: tv_tensors.BoundingBoxFormat, canvas_size: Tuple[int, int], padding: List[int], padding_mode: str = "constant", ) -> Tuple[torch.Tensor, Tuple[int, int]]: if padding_mode not in ["constant"]: # TODO: add support of other padding modes raise ValueError(f"Padding mode '{padding_mode}' is not supported with bounding boxes") left, right, top, bottom = _parse_pad_padding(padding) if format == tv_tensors.BoundingBoxFormat.XYXY: pad = [left, top, left, top] else: pad = [left, top, 0, 0] bounding_boxes = bounding_boxes + torch.tensor(pad, dtype=bounding_boxes.dtype, device=bounding_boxes.device) height, width = canvas_size height += top + bottom width += left + right canvas_size = (height, width) return clamp_bounding_boxes(bounding_boxes, format=format, canvas_size=canvas_size), canvas_size @_register_kernel_internal(pad, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False) def _pad_bounding_boxes_dispatch( inpt: tv_tensors.BoundingBoxes, padding: List[int], padding_mode: str = "constant", **kwargs ) -> tv_tensors.BoundingBoxes: output, canvas_size = pad_bounding_boxes( inpt.as_subclass(torch.Tensor), format=inpt.format, canvas_size=inpt.canvas_size, padding=padding, padding_mode=padding_mode, ) return tv_tensors.wrap(output, like=inpt, canvas_size=canvas_size) @_register_kernel_internal(pad, tv_tensors.Video) def pad_video( video: torch.Tensor, padding: List[int], fill: Optional[Union[int, float, List[float]]] = None, padding_mode: str = "constant", ) -> torch.Tensor: return pad_image(video, padding, fill=fill, padding_mode=padding_mode)
[docs]def crop(inpt: torch.Tensor, top: int, left: int, height: int, width: int) -> torch.Tensor: """See :class:`~torchvision.transforms.v2.RandomCrop` for details.""" if torch.jit.is_scripting(): return crop_image(inpt, top=top, left=left, height=height, width=width) _log_api_usage_once(crop) kernel = _get_kernel(crop, type(inpt)) return kernel(inpt, top=top, left=left, height=height, width=width)
@_register_kernel_internal(crop, torch.Tensor) @_register_kernel_internal(crop, tv_tensors.Image) def crop_image(image: torch.Tensor, top: int, left: int, height: int, width: int) -> torch.Tensor: h, w = image.shape[-2:] right = left + width bottom = top + height if left < 0 or top < 0 or right > w or bottom > h: image = image[..., max(top, 0) : bottom, max(left, 0) : right] torch_padding = [ max(min(right, 0) - left, 0), max(right - max(w, left), 0), max(min(bottom, 0) - top, 0), max(bottom - max(h, top), 0), ] return _pad_with_scalar_fill(image, torch_padding, fill=0, padding_mode="constant") return image[..., top:bottom, left:right] _crop_image_pil = _FP.crop _register_kernel_internal(crop, PIL.Image.Image)(_crop_image_pil) def crop_bounding_boxes( bounding_boxes: torch.Tensor, format: tv_tensors.BoundingBoxFormat, top: int, left: int, height: int, width: int, ) -> Tuple[torch.Tensor, Tuple[int, int]]: # Crop or implicit pad if left and/or top have negative values: if format == tv_tensors.BoundingBoxFormat.XYXY: sub = [left, top, left, top] else: sub = [left, top, 0, 0] bounding_boxes = bounding_boxes - torch.tensor(sub, dtype=bounding_boxes.dtype, device=bounding_boxes.device) canvas_size = (height, width) return clamp_bounding_boxes(bounding_boxes, format=format, canvas_size=canvas_size), canvas_size @_register_kernel_internal(crop, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False) def _crop_bounding_boxes_dispatch( inpt: tv_tensors.BoundingBoxes, top: int, left: int, height: int, width: int ) -> tv_tensors.BoundingBoxes: output, canvas_size = crop_bounding_boxes( inpt.as_subclass(torch.Tensor), format=inpt.format, top=top, left=left, height=height, width=width ) return tv_tensors.wrap(output, like=inpt, canvas_size=canvas_size) @_register_kernel_internal(crop, tv_tensors.Mask) def crop_mask(mask: torch.Tensor, top: int, left: int, height: int, width: int) -> torch.Tensor: if mask.ndim < 3: mask = mask.unsqueeze(0) needs_squeeze = True else: needs_squeeze = False output = crop_image(mask, top, left, height, width) if needs_squeeze: output = output.squeeze(0) return output @_register_kernel_internal(crop, tv_tensors.Video) def crop_video(video: torch.Tensor, top: int, left: int, height: int, width: int) -> torch.Tensor: return crop_image(video, top, left, height, width)
[docs]def perspective( inpt: torch.Tensor, startpoints: Optional[List[List[int]]], endpoints: Optional[List[List[int]]], interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR, fill: _FillTypeJIT = None, coefficients: Optional[List[float]] = None, ) -> torch.Tensor: """See :class:`~torchvision.transforms.v2.RandomPerspective` for details.""" if torch.jit.is_scripting(): return perspective_image( inpt, startpoints=startpoints, endpoints=endpoints, interpolation=interpolation, fill=fill, coefficients=coefficients, ) _log_api_usage_once(perspective) kernel = _get_kernel(perspective, type(inpt)) return kernel( inpt, startpoints=startpoints, endpoints=endpoints, interpolation=interpolation, fill=fill, coefficients=coefficients, )
def _perspective_grid(coeffs: List[float], ow: int, oh: int, dtype: torch.dtype, device: torch.device) -> torch.Tensor: # https://github.com/python-pillow/Pillow/blob/4634eafe3c695a014267eefdce830b4a825beed7/ # src/libImaging/Geometry.c#L394 # # x_out = (coeffs[0] * x + coeffs[1] * y + coeffs[2]) / (coeffs[6] * x + coeffs[7] * y + 1) # y_out = (coeffs[3] * x + coeffs[4] * y + coeffs[5]) / (coeffs[6] * x + coeffs[7] * y + 1) # theta1 = torch.tensor( [[[coeffs[0], coeffs[1], coeffs[2]], [coeffs[3], coeffs[4], coeffs[5]]]], dtype=dtype, device=device ) theta2 = torch.tensor([[[coeffs[6], coeffs[7], 1.0], [coeffs[6], coeffs[7], 1.0]]], dtype=dtype, device=device) d = 0.5 base_grid = torch.empty(1, oh, ow, 3, dtype=dtype, device=device) x_grid = torch.linspace(d, ow + d - 1.0, steps=ow, device=device, dtype=dtype) base_grid[..., 0].copy_(x_grid) y_grid = torch.linspace(d, oh + d - 1.0, steps=oh, device=device, dtype=dtype).unsqueeze_(-1) base_grid[..., 1].copy_(y_grid) base_grid[..., 2].fill_(1) rescaled_theta1 = theta1.transpose(1, 2).div_(torch.tensor([0.5 * ow, 0.5 * oh], dtype=dtype, device=device)) shape = (1, oh * ow, 3) output_grid1 = base_grid.view(shape).bmm(rescaled_theta1) output_grid2 = base_grid.view(shape).bmm(theta2.transpose(1, 2)) output_grid = output_grid1.div_(output_grid2).sub_(1.0) return output_grid.view(1, oh, ow, 2) def _perspective_coefficients( startpoints: Optional[List[List[int]]], endpoints: Optional[List[List[int]]], coefficients: Optional[List[float]], ) -> List[float]: if coefficients is not None: if startpoints is not None and endpoints is not None: raise ValueError("The startpoints/endpoints and the coefficients shouldn't be defined concurrently.") elif len(coefficients) != 8: raise ValueError("Argument coefficients should have 8 float values") return coefficients elif startpoints is not None and endpoints is not None: return _get_perspective_coeffs(startpoints, endpoints) else: raise ValueError("Either the startpoints/endpoints or the coefficients must have non `None` values.") @_register_kernel_internal(perspective, torch.Tensor) @_register_kernel_internal(perspective, tv_tensors.Image) def perspective_image( image: torch.Tensor, startpoints: Optional[List[List[int]]], endpoints: Optional[List[List[int]]], interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR, fill: _FillTypeJIT = None, coefficients: Optional[List[float]] = None, ) -> torch.Tensor: perspective_coeffs = _perspective_coefficients(startpoints, endpoints, coefficients) interpolation = _check_interpolation(interpolation) _assert_grid_transform_inputs( image, matrix=None, interpolation=interpolation.value, fill=fill, supported_interpolation_modes=["nearest", "bilinear"], coeffs=perspective_coeffs, ) oh, ow = image.shape[-2:] dtype = image.dtype if torch.is_floating_point(image) else torch.float32 grid = _perspective_grid(perspective_coeffs, ow=ow, oh=oh, dtype=dtype, device=image.device) return _apply_grid_transform(image, grid, interpolation.value, fill=fill) @_register_kernel_internal(perspective, PIL.Image.Image) def _perspective_image_pil( image: PIL.Image.Image, startpoints: Optional[List[List[int]]], endpoints: Optional[List[List[int]]], interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR, fill: _FillTypeJIT = None, coefficients: Optional[List[float]] = None, ) -> PIL.Image.Image: perspective_coeffs = _perspective_coefficients(startpoints, endpoints, coefficients) interpolation = _check_interpolation(interpolation) return _FP.perspective(image, perspective_coeffs, interpolation=pil_modes_mapping[interpolation], fill=fill) def perspective_bounding_boxes( bounding_boxes: torch.Tensor, format: tv_tensors.BoundingBoxFormat, canvas_size: Tuple[int, int], startpoints: Optional[List[List[int]]], endpoints: Optional[List[List[int]]], coefficients: Optional[List[float]] = None, ) -> torch.Tensor: if bounding_boxes.numel() == 0: return bounding_boxes perspective_coeffs = _perspective_coefficients(startpoints, endpoints, coefficients) original_shape = bounding_boxes.shape # TODO: first cast to float if bbox is int64 before convert_bounding_box_format bounding_boxes = ( convert_bounding_box_format(bounding_boxes, old_format=format, new_format=tv_tensors.BoundingBoxFormat.XYXY) ).reshape(-1, 4) dtype = bounding_boxes.dtype if torch.is_floating_point(bounding_boxes) else torch.float32 device = bounding_boxes.device # perspective_coeffs are computed as endpoint -> start point # We have to invert perspective_coeffs for bboxes: # (x, y) - end point and (x_out, y_out) - start point # x_out = (coeffs[0] * x + coeffs[1] * y + coeffs[2]) / (coeffs[6] * x + coeffs[7] * y + 1) # y_out = (coeffs[3] * x + coeffs[4] * y + coeffs[5]) / (coeffs[6] * x + coeffs[7] * y + 1) # and we would like to get: # x = (inv_coeffs[0] * x_out + inv_coeffs[1] * y_out + inv_coeffs[2]) # / (inv_coeffs[6] * x_out + inv_coeffs[7] * y_out + 1) # y = (inv_coeffs[3] * x_out + inv_coeffs[4] * y_out + inv_coeffs[5]) # / (inv_coeffs[6] * x_out + inv_coeffs[7] * y_out + 1) # and compute inv_coeffs in terms of coeffs denom = perspective_coeffs[0] * perspective_coeffs[4] - perspective_coeffs[1] * perspective_coeffs[3] if denom == 0: raise RuntimeError( f"Provided perspective_coeffs {perspective_coeffs} can not be inverted to transform bounding boxes. " f"Denominator is zero, denom={denom}" ) inv_coeffs = [ (perspective_coeffs[4] - perspective_coeffs[5] * perspective_coeffs[7]) / denom, (-perspective_coeffs[1] + perspective_coeffs[2] * perspective_coeffs[7]) / denom, (perspective_coeffs[1] * perspective_coeffs[5] - perspective_coeffs[2] * perspective_coeffs[4]) / denom, (-perspective_coeffs[3] + perspective_coeffs[5] * perspective_coeffs[6]) / denom, (perspective_coeffs[0] - perspective_coeffs[2] * perspective_coeffs[6]) / denom, (-perspective_coeffs[0] * perspective_coeffs[5] + perspective_coeffs[2] * perspective_coeffs[3]) / denom, (-perspective_coeffs[4] * perspective_coeffs[6] + perspective_coeffs[3] * perspective_coeffs[7]) / denom, (-perspective_coeffs[0] * perspective_coeffs[7] + perspective_coeffs[1] * perspective_coeffs[6]) / denom, ] theta1 = torch.tensor( [[inv_coeffs[0], inv_coeffs[1], inv_coeffs[2]], [inv_coeffs[3], inv_coeffs[4], inv_coeffs[5]]], dtype=dtype, device=device, ) theta2 = torch.tensor( [[inv_coeffs[6], inv_coeffs[7], 1.0], [inv_coeffs[6], inv_coeffs[7], 1.0]], dtype=dtype, device=device ) # 1) Let's transform bboxes into a tensor of 4 points (top-left, top-right, bottom-left, bottom-right corners). # Tensor of points has shape (N * 4, 3), where N is the number of bboxes # Single point structure is similar to # [(xmin, ymin, 1), (xmax, ymin, 1), (xmax, ymax, 1), (xmin, ymax, 1)] points = bounding_boxes[:, [[0, 1], [2, 1], [2, 3], [0, 3]]].reshape(-1, 2) points = torch.cat([points, torch.ones(points.shape[0], 1, device=points.device)], dim=-1) # 2) Now let's transform the points using perspective matrices # x_out = (coeffs[0] * x + coeffs[1] * y + coeffs[2]) / (coeffs[6] * x + coeffs[7] * y + 1) # y_out = (coeffs[3] * x + coeffs[4] * y + coeffs[5]) / (coeffs[6] * x + coeffs[7] * y + 1) numer_points = torch.matmul(points, theta1.T) denom_points = torch.matmul(points, theta2.T) transformed_points = numer_points.div_(denom_points) # 3) Reshape transformed points to [N boxes, 4 points, x/y coords] # and compute bounding box from 4 transformed points: transformed_points = transformed_points.reshape(-1, 4, 2) out_bbox_mins, out_bbox_maxs = torch.aminmax(transformed_points, dim=1) out_bboxes = clamp_bounding_boxes( torch.cat([out_bbox_mins, out_bbox_maxs], dim=1).to(bounding_boxes.dtype), format=tv_tensors.BoundingBoxFormat.XYXY, canvas_size=canvas_size, ) # out_bboxes should be of shape [N boxes, 4] return convert_bounding_box_format( out_bboxes, old_format=tv_tensors.BoundingBoxFormat.XYXY, new_format=format, inplace=True ).reshape(original_shape) @_register_kernel_internal(perspective, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False) def _perspective_bounding_boxes_dispatch( inpt: tv_tensors.BoundingBoxes, startpoints: Optional[List[List[int]]], endpoints: Optional[List[List[int]]], coefficients: Optional[List[float]] = None, **kwargs, ) -> tv_tensors.BoundingBoxes: output = perspective_bounding_boxes( inpt.as_subclass(torch.Tensor), format=inpt.format, canvas_size=inpt.canvas_size, startpoints=startpoints, endpoints=endpoints, coefficients=coefficients, ) return tv_tensors.wrap(output, like=inpt) def perspective_mask( mask: torch.Tensor, startpoints: Optional[List[List[int]]], endpoints: Optional[List[List[int]]], fill: _FillTypeJIT = None, coefficients: Optional[List[float]] = None, ) -> torch.Tensor: if mask.ndim < 3: mask = mask.unsqueeze(0) needs_squeeze = True else: needs_squeeze = False output = perspective_image( mask, startpoints, endpoints, interpolation=InterpolationMode.NEAREST, fill=fill, coefficients=coefficients ) if needs_squeeze: output = output.squeeze(0) return output @_register_kernel_internal(perspective, tv_tensors.Mask, tv_tensor_wrapper=False) def _perspective_mask_dispatch( inpt: tv_tensors.Mask, startpoints: Optional[List[List[int]]], endpoints: Optional[List[List[int]]], fill: _FillTypeJIT = None, coefficients: Optional[List[float]] = None, **kwargs, ) -> tv_tensors.Mask: output = perspective_mask( inpt.as_subclass(torch.Tensor), startpoints=startpoints, endpoints=endpoints, fill=fill, coefficients=coefficients, ) return tv_tensors.wrap(output, like=inpt) @_register_kernel_internal(perspective, tv_tensors.Video) def perspective_video( video: torch.Tensor, startpoints: Optional[List[List[int]]], endpoints: Optional[List[List[int]]], interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR, fill: _FillTypeJIT = None, coefficients: Optional[List[float]] = None, ) -> torch.Tensor: return perspective_image( video, startpoints, endpoints, interpolation=interpolation, fill=fill, coefficients=coefficients )
[docs]def elastic( inpt: torch.Tensor, displacement: torch.Tensor, interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR, fill: _FillTypeJIT = None, ) -> torch.Tensor: """See :class:`~torchvision.transforms.v2.ElasticTransform` for details.""" if torch.jit.is_scripting(): return elastic_image(inpt, displacement=displacement, interpolation=interpolation, fill=fill) _log_api_usage_once(elastic) kernel = _get_kernel(elastic, type(inpt)) return kernel(inpt, displacement=displacement, interpolation=interpolation, fill=fill)
elastic_transform = elastic @_register_kernel_internal(elastic, torch.Tensor) @_register_kernel_internal(elastic, tv_tensors.Image) def elastic_image( image: torch.Tensor, displacement: torch.Tensor, interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR, fill: _FillTypeJIT = None, ) -> torch.Tensor: if not isinstance(displacement, torch.Tensor): raise TypeError("Argument displacement should be a Tensor") interpolation = _check_interpolation(interpolation) height, width = image.shape[-2:] device = image.device dtype = image.dtype if torch.is_floating_point(image) else torch.float32 # Patch: elastic transform should support (cpu,f16) input is_cpu_half = device.type == "cpu" and dtype == torch.float16 if is_cpu_half: image = image.to(torch.float32) dtype = torch.float32 # We are aware that if input image dtype is uint8 and displacement is float64 then # displacement will be cast to float32 and all computations will be done with float32 # We can fix this later if needed expected_shape = (1, height, width, 2) if expected_shape != displacement.shape: raise ValueError(f"Argument displacement shape should be {expected_shape}, but given {displacement.shape}") grid = _create_identity_grid((height, width), device=device, dtype=dtype).add_( displacement.to(dtype=dtype, device=device) ) output = _apply_grid_transform(image, grid, interpolation.value, fill=fill) if is_cpu_half: output = output.to(torch.float16) return output @_register_kernel_internal(elastic, PIL.Image.Image) def _elastic_image_pil( image: PIL.Image.Image, displacement: torch.Tensor, interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR, fill: _FillTypeJIT = None, ) -> PIL.Image.Image: t_img = pil_to_tensor(image) output = elastic_image(t_img, displacement, interpolation=interpolation, fill=fill) return to_pil_image(output, mode=image.mode) def _create_identity_grid(size: Tuple[int, int], device: torch.device, dtype: torch.dtype) -> torch.Tensor: sy, sx = size base_grid = torch.empty(1, sy, sx, 2, device=device, dtype=dtype) x_grid = torch.linspace((-sx + 1) / sx, (sx - 1) / sx, sx, device=device, dtype=dtype) base_grid[..., 0].copy_(x_grid) y_grid = torch.linspace((-sy + 1) / sy, (sy - 1) / sy, sy, device=device, dtype=dtype).unsqueeze_(-1) base_grid[..., 1].copy_(y_grid) return base_grid def elastic_bounding_boxes( bounding_boxes: torch.Tensor, format: tv_tensors.BoundingBoxFormat, canvas_size: Tuple[int, int], displacement: torch.Tensor, ) -> torch.Tensor: expected_shape = (1, canvas_size[0], canvas_size[1], 2) if not isinstance(displacement, torch.Tensor): raise TypeError("Argument displacement should be a Tensor") elif displacement.shape != expected_shape: raise ValueError(f"Argument displacement shape should be {expected_shape}, but given {displacement.shape}") if bounding_boxes.numel() == 0: return bounding_boxes # TODO: add in docstring about approximation we are doing for grid inversion device = bounding_boxes.device dtype = bounding_boxes.dtype if torch.is_floating_point(bounding_boxes) else torch.float32 if displacement.dtype != dtype or displacement.device != device: displacement = displacement.to(dtype=dtype, device=device) original_shape = bounding_boxes.shape # TODO: first cast to float if bbox is int64 before convert_bounding_box_format bounding_boxes = ( convert_bounding_box_format(bounding_boxes, old_format=format, new_format=tv_tensors.BoundingBoxFormat.XYXY) ).reshape(-1, 4) id_grid = _create_identity_grid(canvas_size, device=device, dtype=dtype) # We construct an approximation of inverse grid as inv_grid = id_grid - displacement # This is not an exact inverse of the grid inv_grid = id_grid.sub_(displacement) # Get points from bboxes points = bounding_boxes[:, [[0, 1], [2, 1], [2, 3], [0, 3]]].reshape(-1, 2) if points.is_floating_point(): points = points.ceil_() index_xy = points.to(dtype=torch.long) index_x, index_y = index_xy[:, 0], index_xy[:, 1] # Transform points: t_size = torch.tensor(canvas_size[::-1], device=displacement.device, dtype=displacement.dtype) transformed_points = inv_grid[0, index_y, index_x, :].add_(1).mul_(0.5 * t_size).sub_(0.5) transformed_points = transformed_points.reshape(-1, 4, 2) out_bbox_mins, out_bbox_maxs = torch.aminmax(transformed_points, dim=1) out_bboxes = clamp_bounding_boxes( torch.cat([out_bbox_mins, out_bbox_maxs], dim=1).to(bounding_boxes.dtype), format=tv_tensors.BoundingBoxFormat.XYXY, canvas_size=canvas_size, ) return convert_bounding_box_format( out_bboxes, old_format=tv_tensors.BoundingBoxFormat.XYXY, new_format=format, inplace=True ).reshape(original_shape) @_register_kernel_internal(elastic, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False) def _elastic_bounding_boxes_dispatch( inpt: tv_tensors.BoundingBoxes, displacement: torch.Tensor, **kwargs ) -> tv_tensors.BoundingBoxes: output = elastic_bounding_boxes( inpt.as_subclass(torch.Tensor), format=inpt.format, canvas_size=inpt.canvas_size, displacement=displacement ) return tv_tensors.wrap(output, like=inpt) def elastic_mask( mask: torch.Tensor, displacement: torch.Tensor, fill: _FillTypeJIT = None, ) -> torch.Tensor: if mask.ndim < 3: mask = mask.unsqueeze(0) needs_squeeze = True else: needs_squeeze = False output = elastic_image(mask, displacement=displacement, interpolation=InterpolationMode.NEAREST, fill=fill) if needs_squeeze: output = output.squeeze(0) return output @_register_kernel_internal(elastic, tv_tensors.Mask, tv_tensor_wrapper=False) def _elastic_mask_dispatch( inpt: tv_tensors.Mask, displacement: torch.Tensor, fill: _FillTypeJIT = None, **kwargs ) -> tv_tensors.Mask: output = elastic_mask(inpt.as_subclass(torch.Tensor), displacement=displacement, fill=fill) return tv_tensors.wrap(output, like=inpt) @_register_kernel_internal(elastic, tv_tensors.Video) def elastic_video( video: torch.Tensor, displacement: torch.Tensor, interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR, fill: _FillTypeJIT = None, ) -> torch.Tensor: return elastic_image(video, displacement, interpolation=interpolation, fill=fill)
[docs]def center_crop(inpt: torch.Tensor, output_size: List[int]) -> torch.Tensor: """See :class:`~torchvision.transforms.v2.RandomCrop` for details.""" if torch.jit.is_scripting(): return center_crop_image(inpt, output_size=output_size) _log_api_usage_once(center_crop) kernel = _get_kernel(center_crop, type(inpt)) return kernel(inpt, output_size=output_size)
def _center_crop_parse_output_size(output_size: List[int]) -> List[int]: if isinstance(output_size, numbers.Number): s = int(output_size) return [s, s] elif isinstance(output_size, (tuple, list)) and len(output_size) == 1: return [output_size[0], output_size[0]] else: return list(output_size) def _center_crop_compute_padding(crop_height: int, crop_width: int, image_height: int, image_width: int) -> List[int]: return [ (crop_width - image_width) // 2 if crop_width > image_width else 0, (crop_height - image_height) // 2 if crop_height > image_height else 0, (crop_width - image_width + 1) // 2 if crop_width > image_width else 0, (crop_height - image_height + 1) // 2 if crop_height > image_height else 0, ] def _center_crop_compute_crop_anchor( crop_height: int, crop_width: int, image_height: int, image_width: int ) -> Tuple[int, int]: crop_top = int(round((image_height - crop_height) / 2.0)) crop_left = int(round((image_width - crop_width) / 2.0)) return crop_top, crop_left @_register_kernel_internal(center_crop, torch.Tensor) @_register_kernel_internal(center_crop, tv_tensors.Image) def center_crop_image(image: torch.Tensor, output_size: List[int]) -> torch.Tensor: crop_height, crop_width = _center_crop_parse_output_size(output_size) shape = image.shape if image.numel() == 0: return image.reshape(shape[:-2] + (crop_height, crop_width)) image_height, image_width = shape[-2:] if crop_height > image_height or crop_width > image_width: padding_ltrb = _center_crop_compute_padding(crop_height, crop_width, image_height, image_width) image = torch_pad(image, _parse_pad_padding(padding_ltrb), value=0.0) image_height, image_width = image.shape[-2:] if crop_width == image_width and crop_height == image_height: return image crop_top, crop_left = _center_crop_compute_crop_anchor(crop_height, crop_width, image_height, image_width) return image[..., crop_top : (crop_top + crop_height), crop_left : (crop_left + crop_width)] @_register_kernel_internal(center_crop, PIL.Image.Image) def _center_crop_image_pil(image: PIL.Image.Image, output_size: List[int]) -> PIL.Image.Image: crop_height, crop_width = _center_crop_parse_output_size(output_size) image_height, image_width = _get_size_image_pil(image) if crop_height > image_height or crop_width > image_width: padding_ltrb = _center_crop_compute_padding(crop_height, crop_width, image_height, image_width) image = _pad_image_pil(image, padding_ltrb, fill=0) image_height, image_width = _get_size_image_pil(image) if crop_width == image_width and crop_height == image_height: return image crop_top, crop_left = _center_crop_compute_crop_anchor(crop_height, crop_width, image_height, image_width) return _crop_image_pil(image, crop_top, crop_left, crop_height, crop_width) def center_crop_bounding_boxes( bounding_boxes: torch.Tensor, format: tv_tensors.BoundingBoxFormat, canvas_size: Tuple[int, int], output_size: List[int], ) -> Tuple[torch.Tensor, Tuple[int, int]]: crop_height, crop_width = _center_crop_parse_output_size(output_size) crop_top, crop_left = _center_crop_compute_crop_anchor(crop_height, crop_width, *canvas_size) return crop_bounding_boxes( bounding_boxes, format, top=crop_top, left=crop_left, height=crop_height, width=crop_width ) @_register_kernel_internal(center_crop, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False) def _center_crop_bounding_boxes_dispatch( inpt: tv_tensors.BoundingBoxes, output_size: List[int] ) -> tv_tensors.BoundingBoxes: output, canvas_size = center_crop_bounding_boxes( inpt.as_subclass(torch.Tensor), format=inpt.format, canvas_size=inpt.canvas_size, output_size=output_size ) return tv_tensors.wrap(output, like=inpt, canvas_size=canvas_size) @_register_kernel_internal(center_crop, tv_tensors.Mask) def center_crop_mask(mask: torch.Tensor, output_size: List[int]) -> torch.Tensor: if mask.ndim < 3: mask = mask.unsqueeze(0) needs_squeeze = True else: needs_squeeze = False output = center_crop_image(image=mask, output_size=output_size) if needs_squeeze: output = output.squeeze(0) return output @_register_kernel_internal(center_crop, tv_tensors.Video) def center_crop_video(video: torch.Tensor, output_size: List[int]) -> torch.Tensor: return center_crop_image(video, output_size)
[docs]def resized_crop( inpt: torch.Tensor, top: int, left: int, height: int, width: int, size: List[int], interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR, antialias: Optional[bool] = True, ) -> torch.Tensor: """See :class:`~torchvision.transforms.v2.RandomResizedCrop` for details.""" if torch.jit.is_scripting(): return resized_crop_image( inpt, top=top, left=left, height=height, width=width, size=size, interpolation=interpolation, antialias=antialias, ) _log_api_usage_once(resized_crop) kernel = _get_kernel(resized_crop, type(inpt)) return kernel( inpt, top=top, left=left, height=height, width=width, size=size, interpolation=interpolation, antialias=antialias, )
@_register_kernel_internal(resized_crop, torch.Tensor) @_register_kernel_internal(resized_crop, tv_tensors.Image) def resized_crop_image( image: torch.Tensor, top: int, left: int, height: int, width: int, size: List[int], interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR, antialias: Optional[bool] = True, ) -> torch.Tensor: image = crop_image(image, top, left, height, width) return resize_image(image, size, interpolation=interpolation, antialias=antialias) def _resized_crop_image_pil( image: PIL.Image.Image, top: int, left: int, height: int, width: int, size: List[int], interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR, ) -> PIL.Image.Image: image = _crop_image_pil(image, top, left, height, width) return _resize_image_pil(image, size, interpolation=interpolation) @_register_kernel_internal(resized_crop, PIL.Image.Image) def _resized_crop_image_pil_dispatch( image: PIL.Image.Image, top: int, left: int, height: int, width: int, size: List[int], interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR, antialias: Optional[bool] = True, ) -> PIL.Image.Image: if antialias is False: warnings.warn("Anti-alias option is always applied for PIL Image input. Argument antialias is ignored.") return _resized_crop_image_pil( image, top=top, left=left, height=height, width=width, size=size, interpolation=interpolation, ) def resized_crop_bounding_boxes( bounding_boxes: torch.Tensor, format: tv_tensors.BoundingBoxFormat, top: int, left: int, height: int, width: int, size: List[int], ) -> Tuple[torch.Tensor, Tuple[int, int]]: bounding_boxes, canvas_size = crop_bounding_boxes(bounding_boxes, format, top, left, height, width) return resize_bounding_boxes(bounding_boxes, canvas_size=canvas_size, size=size) @_register_kernel_internal(resized_crop, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False) def _resized_crop_bounding_boxes_dispatch( inpt: tv_tensors.BoundingBoxes, top: int, left: int, height: int, width: int, size: List[int], **kwargs ) -> tv_tensors.BoundingBoxes: output, canvas_size = resized_crop_bounding_boxes( inpt.as_subclass(torch.Tensor), format=inpt.format, top=top, left=left, height=height, width=width, size=size ) return tv_tensors.wrap(output, like=inpt, canvas_size=canvas_size) def resized_crop_mask( mask: torch.Tensor, top: int, left: int, height: int, width: int, size: List[int], ) -> torch.Tensor: mask = crop_mask(mask, top, left, height, width) return resize_mask(mask, size) @_register_kernel_internal(resized_crop, tv_tensors.Mask, tv_tensor_wrapper=False) def _resized_crop_mask_dispatch( inpt: tv_tensors.Mask, top: int, left: int, height: int, width: int, size: List[int], **kwargs ) -> tv_tensors.Mask: output = resized_crop_mask( inpt.as_subclass(torch.Tensor), top=top, left=left, height=height, width=width, size=size ) return tv_tensors.wrap(output, like=inpt) @_register_kernel_internal(resized_crop, tv_tensors.Video) def resized_crop_video( video: torch.Tensor, top: int, left: int, height: int, width: int, size: List[int], interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR, antialias: Optional[bool] = True, ) -> torch.Tensor: return resized_crop_image( video, top, left, height, width, antialias=antialias, size=size, interpolation=interpolation )
[docs]def five_crop( inpt: torch.Tensor, size: List[int] ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: """See :class:`~torchvision.transforms.v2.FiveCrop` for details.""" if torch.jit.is_scripting(): return five_crop_image(inpt, size=size) _log_api_usage_once(five_crop) kernel = _get_kernel(five_crop, type(inpt)) return kernel(inpt, size=size)
def _parse_five_crop_size(size: List[int]) -> List[int]: if isinstance(size, numbers.Number): s = int(size) size = [s, s] elif isinstance(size, (tuple, list)) and len(size) == 1: s = size[0] size = [s, s] if len(size) != 2: raise ValueError("Please provide only two dimensions (h, w) for size.") return size @_register_five_ten_crop_kernel_internal(five_crop, torch.Tensor) @_register_five_ten_crop_kernel_internal(five_crop, tv_tensors.Image) def five_crop_image( image: torch.Tensor, size: List[int] ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: crop_height, crop_width = _parse_five_crop_size(size) image_height, image_width = image.shape[-2:] if crop_width > image_width or crop_height > image_height: raise ValueError(f"Requested crop size {size} is bigger than input size {(image_height, image_width)}") tl = crop_image(image, 0, 0, crop_height, crop_width) tr = crop_image(image, 0, image_width - crop_width, crop_height, crop_width) bl = crop_image(image, image_height - crop_height, 0, crop_height, crop_width) br = crop_image(image, image_height - crop_height, image_width - crop_width, crop_height, crop_width) center = center_crop_image(image, [crop_height, crop_width]) return tl, tr, bl, br, center @_register_five_ten_crop_kernel_internal(five_crop, PIL.Image.Image) def _five_crop_image_pil( image: PIL.Image.Image, size: List[int] ) -> Tuple[PIL.Image.Image, PIL.Image.Image, PIL.Image.Image, PIL.Image.Image, PIL.Image.Image]: crop_height, crop_width = _parse_five_crop_size(size) image_height, image_width = _get_size_image_pil(image) if crop_width > image_width or crop_height > image_height: raise ValueError(f"Requested crop size {size} is bigger than input size {(image_height, image_width)}") tl = _crop_image_pil(image, 0, 0, crop_height, crop_width) tr = _crop_image_pil(image, 0, image_width - crop_width, crop_height, crop_width) bl = _crop_image_pil(image, image_height - crop_height, 0, crop_height, crop_width) br = _crop_image_pil(image, image_height - crop_height, image_width - crop_width, crop_height, crop_width) center = _center_crop_image_pil(image, [crop_height, crop_width]) return tl, tr, bl, br, center @_register_five_ten_crop_kernel_internal(five_crop, tv_tensors.Video) def five_crop_video( video: torch.Tensor, size: List[int] ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: return five_crop_image(video, size)
[docs]def ten_crop( inpt: torch.Tensor, size: List[int], vertical_flip: bool = False ) -> Tuple[ torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, ]: """See :class:`~torchvision.transforms.v2.TenCrop` for details.""" if torch.jit.is_scripting(): return ten_crop_image(inpt, size=size, vertical_flip=vertical_flip) _log_api_usage_once(ten_crop) kernel = _get_kernel(ten_crop, type(inpt)) return kernel(inpt, size=size, vertical_flip=vertical_flip)
@_register_five_ten_crop_kernel_internal(ten_crop, torch.Tensor) @_register_five_ten_crop_kernel_internal(ten_crop, tv_tensors.Image) def ten_crop_image( image: torch.Tensor, size: List[int], vertical_flip: bool = False ) -> Tuple[ torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, ]: non_flipped = five_crop_image(image, size) if vertical_flip: image = vertical_flip_image(image) else: image = horizontal_flip_image(image) flipped = five_crop_image(image, size) return non_flipped + flipped @_register_five_ten_crop_kernel_internal(ten_crop, PIL.Image.Image) def _ten_crop_image_pil( image: PIL.Image.Image, size: List[int], vertical_flip: bool = False ) -> Tuple[ PIL.Image.Image, PIL.Image.Image, PIL.Image.Image, PIL.Image.Image, PIL.Image.Image, PIL.Image.Image, PIL.Image.Image, PIL.Image.Image, PIL.Image.Image, PIL.Image.Image, ]: non_flipped = _five_crop_image_pil(image, size) if vertical_flip: image = _vertical_flip_image_pil(image) else: image = _horizontal_flip_image_pil(image) flipped = _five_crop_image_pil(image, size) return non_flipped + flipped @_register_five_ten_crop_kernel_internal(ten_crop, tv_tensors.Video) def ten_crop_video( video: torch.Tensor, size: List[int], vertical_flip: bool = False ) -> Tuple[ torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, ]: return ten_crop_image(video, size, vertical_flip=vertical_flip)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources