[docs]@torch.fx.wrapdefps_roi_align(input:Tensor,boxes:Tensor,output_size:int,spatial_scale:float=1.0,sampling_ratio:int=-1,)->Tensor:""" Performs Position-Sensitive Region of Interest (RoI) Align operator mentioned in Light-Head R-CNN. Args: input (Tensor[N, C, H, W]): The input tensor, i.e. a batch with ``N`` elements. Each element contains ``C`` feature maps of dimensions ``H x W``. boxes (Tensor[K, 5] or List[Tensor[L, 4]]): the box coordinates in (x1, y1, x2, y2) format where the regions will be taken from. The coordinate must satisfy ``0 <= x1 < x2`` and ``0 <= y1 < y2``. If a single Tensor is passed, then the first column should contain the index of the corresponding element in the batch, i.e. a number in ``[0, N - 1]``. If a list of Tensors is passed, then each Tensor will correspond to the boxes for an element i in the batch. output_size (int or Tuple[int, int]): the size of the output (in bins or pixels) after the pooling is performed, as (height, width). spatial_scale (float): a scaling factor that maps the box coordinates to the input coordinates. For example, if your boxes are defined on the scale of a 224x224 image and your input is a 112x112 feature map (resulting from a 0.5x scaling of the original image), you'll want to set this to 0.5. Default: 1.0 sampling_ratio (int): number of sampling points in the interpolation grid used to compute the output value of each pooled output bin. If > 0, then exactly ``sampling_ratio x sampling_ratio`` sampling points per bin are used. If <= 0, then an adaptive number of grid points are used (computed as ``ceil(roi_width / output_width)``, and likewise for height). Default: -1 Returns: Tensor[K, C / (output_size[0] * output_size[1]), output_size[0], output_size[1]]: The pooled RoIs """ifnottorch.jit.is_scripting()andnottorch.jit.is_tracing():_log_api_usage_once(ps_roi_align)_assert_has_ops()check_roi_boxes_shape(boxes)rois=boxesoutput_size=_pair(output_size)ifnotisinstance(rois,torch.Tensor):rois=convert_boxes_to_roi_format(rois)output,_=torch.ops.torchvision.ps_roi_align(input,rois,spatial_scale,output_size[0],output_size[1],sampling_ratio)returnoutput
[docs]classPSRoIAlign(nn.Module):""" See :func:`ps_roi_align`. """def__init__(self,output_size:int,spatial_scale:float,sampling_ratio:int,):super().__init__()_log_api_usage_once(self)self.output_size=output_sizeself.spatial_scale=spatial_scaleself.sampling_ratio=sampling_ratio
To analyze traffic and optimize your experience, we serve cookies on this site. By clicking or navigating, you agree to allow our usage of cookies. As the current maintainers of this site, Facebook’s Cookies Policy applies. Learn more, including about available controls: Cookies Policy.