[docs]classSSD300_VGG16_Weights(WeightsEnum):COCO_V1=Weights(url="https://download.pytorch.org/models/ssd300_vgg16_coco-b556d3b4.pth",transforms=ObjectDetection,meta={"num_params":35641826,"categories":_COCO_CATEGORIES,"min_size":(1,1),"recipe":"https://github.com/pytorch/vision/tree/main/references/detection#ssd300-vgg16","_metrics":{"COCO-val2017":{"box_map":25.1,}},"_ops":34.858,"_file_size":135.988,"_docs":"""These weights were produced by following a similar training recipe as on the paper.""",},)DEFAULT=COCO_V1
def_xavier_init(conv:nn.Module):forlayerinconv.modules():ifisinstance(layer,nn.Conv2d):torch.nn.init.xavier_uniform_(layer.weight)iflayer.biasisnotNone:torch.nn.init.constant_(layer.bias,0.0)classSSDHead(nn.Module):def__init__(self,in_channels:List[int],num_anchors:List[int],num_classes:int):super().__init__()self.classification_head=SSDClassificationHead(in_channels,num_anchors,num_classes)self.regression_head=SSDRegressionHead(in_channels,num_anchors)defforward(self,x:List[Tensor])->Dict[str,Tensor]:return{"bbox_regression":self.regression_head(x),"cls_logits":self.classification_head(x),}classSSDScoringHead(nn.Module):def__init__(self,module_list:nn.ModuleList,num_columns:int):super().__init__()self.module_list=module_listself.num_columns=num_columnsdef_get_result_from_module_list(self,x:Tensor,idx:int)->Tensor:""" This is equivalent to self.module_list[idx](x), but torchscript doesn't support this yet """num_blocks=len(self.module_list)ifidx<0:idx+=num_blocksout=xfori,moduleinenumerate(self.module_list):ifi==idx:out=module(x)returnoutdefforward(self,x:List[Tensor])->Tensor:all_results=[]fori,featuresinenumerate(x):results=self._get_result_from_module_list(features,i)# Permute output from (N, A * K, H, W) to (N, HWA, K).N,_,H,W=results.shaperesults=results.view(N,-1,self.num_columns,H,W)results=results.permute(0,3,4,1,2)results=results.reshape(N,-1,self.num_columns)# Size=(N, HWA, K)all_results.append(results)returntorch.cat(all_results,dim=1)classSSDClassificationHead(SSDScoringHead):def__init__(self,in_channels:List[int],num_anchors:List[int],num_classes:int):cls_logits=nn.ModuleList()forchannels,anchorsinzip(in_channels,num_anchors):cls_logits.append(nn.Conv2d(channels,num_classes*anchors,kernel_size=3,padding=1))_xavier_init(cls_logits)super().__init__(cls_logits,num_classes)classSSDRegressionHead(SSDScoringHead):def__init__(self,in_channels:List[int],num_anchors:List[int]):bbox_reg=nn.ModuleList()forchannels,anchorsinzip(in_channels,num_anchors):bbox_reg.append(nn.Conv2d(channels,4*anchors,kernel_size=3,padding=1))_xavier_init(bbox_reg)super().__init__(bbox_reg,4)classSSD(nn.Module):""" Implements SSD architecture from `"SSD: Single Shot MultiBox Detector" <https://arxiv.org/abs/1512.02325>`_. The input to the model is expected to be a list of tensors, each of shape [C, H, W], one for each image, and should be in 0-1 range. Different images can have different sizes, but they will be resized to a fixed size before passing it to the backbone. The behavior of the model changes depending on if it is in training or evaluation mode. During training, the model expects both the input tensors and targets (list of dictionary), containing: - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``. - labels (Int64Tensor[N]): the class label for each ground-truth box The model returns a Dict[Tensor] during training, containing the classification and regression losses. During inference, the model requires only the input tensors, and returns the post-processed predictions as a List[Dict[Tensor]], one for each input image. The fields of the Dict are as follows, where ``N`` is the number of detections: - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``. - labels (Int64Tensor[N]): the predicted labels for each detection - scores (Tensor[N]): the scores for each detection Args: backbone (nn.Module): the network used to compute the features for the model. It should contain an out_channels attribute with the list of the output channels of each feature map. The backbone should return a single Tensor or an OrderedDict[Tensor]. anchor_generator (DefaultBoxGenerator): module that generates the default boxes for a set of feature maps. size (Tuple[int, int]): the width and height to which images will be rescaled before feeding them to the backbone. num_classes (int): number of output classes of the model (including the background). image_mean (Tuple[float, float, float]): mean values used for input normalization. They are generally the mean values of the dataset on which the backbone has been trained on image_std (Tuple[float, float, float]): std values used for input normalization. They are generally the std values of the dataset on which the backbone has been trained on head (nn.Module, optional): Module run on top of the backbone features. Defaults to a module containing a classification and regression module. score_thresh (float): Score threshold used for postprocessing the detections. nms_thresh (float): NMS threshold used for postprocessing the detections. detections_per_img (int): Number of best detections to keep after NMS. iou_thresh (float): minimum IoU between the anchor and the GT box so that they can be considered as positive during training. topk_candidates (int): Number of best detections to keep before NMS. positive_fraction (float): a number between 0 and 1 which indicates the proportion of positive proposals used during the training of the classification head. It is used to estimate the negative to positive ratio. """__annotations__={"box_coder":det_utils.BoxCoder,"proposal_matcher":det_utils.Matcher,}def__init__(self,backbone:nn.Module,anchor_generator:DefaultBoxGenerator,size:Tuple[int,int],num_classes:int,image_mean:Optional[List[float]]=None,image_std:Optional[List[float]]=None,head:Optional[nn.Module]=None,score_thresh:float=0.01,nms_thresh:float=0.45,detections_per_img:int=200,iou_thresh:float=0.5,topk_candidates:int=400,positive_fraction:float=0.25,**kwargs:Any,):super().__init__()_log_api_usage_once(self)self.backbone=backboneself.anchor_generator=anchor_generatorself.box_coder=det_utils.BoxCoder(weights=(10.0,10.0,5.0,5.0))ifheadisNone:ifhasattr(backbone,"out_channels"):out_channels=backbone.out_channelselse:out_channels=det_utils.retrieve_out_channels(backbone,size)iflen(out_channels)!=len(anchor_generator.aspect_ratios):raiseValueError(f"The length of the output channels from the backbone ({len(out_channels)}) do not match the length of the anchor generator aspect ratios ({len(anchor_generator.aspect_ratios)})")num_anchors=self.anchor_generator.num_anchors_per_location()head=SSDHead(out_channels,num_anchors,num_classes)self.head=headself.proposal_matcher=det_utils.SSDMatcher(iou_thresh)ifimage_meanisNone:image_mean=[0.485,0.456,0.406]ifimage_stdisNone:image_std=[0.229,0.224,0.225]self.transform=GeneralizedRCNNTransform(min(size),max(size),image_mean,image_std,size_divisible=1,fixed_size=size,**kwargs)self.score_thresh=score_threshself.nms_thresh=nms_threshself.detections_per_img=detections_per_imgself.topk_candidates=topk_candidatesself.neg_to_pos_ratio=(1.0-positive_fraction)/positive_fraction# used only on torchscript modeself._has_warned=False@torch.jit.unuseddefeager_outputs(self,losses:Dict[str,Tensor],detections:List[Dict[str,Tensor]])->Tuple[Dict[str,Tensor],List[Dict[str,Tensor]]]:ifself.training:returnlossesreturndetectionsdefcompute_loss(self,targets:List[Dict[str,Tensor]],head_outputs:Dict[str,Tensor],anchors:List[Tensor],matched_idxs:List[Tensor],)->Dict[str,Tensor]:bbox_regression=head_outputs["bbox_regression"]cls_logits=head_outputs["cls_logits"]# Match original targets with default boxesnum_foreground=0bbox_loss=[]cls_targets=[]for(targets_per_image,bbox_regression_per_image,cls_logits_per_image,anchors_per_image,matched_idxs_per_image,)inzip(targets,bbox_regression,cls_logits,anchors,matched_idxs):# produce the matching between boxes and targetsforeground_idxs_per_image=torch.where(matched_idxs_per_image>=0)[0]foreground_matched_idxs_per_image=matched_idxs_per_image[foreground_idxs_per_image]num_foreground+=foreground_matched_idxs_per_image.numel()# Calculate regression lossmatched_gt_boxes_per_image=targets_per_image["boxes"][foreground_matched_idxs_per_image]bbox_regression_per_image=bbox_regression_per_image[foreground_idxs_per_image,:]anchors_per_image=anchors_per_image[foreground_idxs_per_image,:]target_regression=self.box_coder.encode_single(matched_gt_boxes_per_image,anchors_per_image)bbox_loss.append(torch.nn.functional.smooth_l1_loss(bbox_regression_per_image,target_regression,reduction="sum"))# Estimate ground truth for class targetsgt_classes_target=torch.zeros((cls_logits_per_image.size(0),),dtype=targets_per_image["labels"].dtype,device=targets_per_image["labels"].device,)gt_classes_target[foreground_idxs_per_image]=targets_per_image["labels"][foreground_matched_idxs_per_image]cls_targets.append(gt_classes_target)bbox_loss=torch.stack(bbox_loss)cls_targets=torch.stack(cls_targets)# Calculate classification lossnum_classes=cls_logits.size(-1)cls_loss=F.cross_entropy(cls_logits.view(-1,num_classes),cls_targets.view(-1),reduction="none").view(cls_targets.size())# Hard Negative Samplingforeground_idxs=cls_targets>0num_negative=self.neg_to_pos_ratio*foreground_idxs.sum(1,keepdim=True)# num_negative[num_negative < self.neg_to_pos_ratio] = self.neg_to_pos_rationegative_loss=cls_loss.clone()negative_loss[foreground_idxs]=-float("inf")# use -inf to detect positive values that creeped in the samplevalues,idx=negative_loss.sort(1,descending=True)# background_idxs = torch.logical_and(idx.sort(1)[1] < num_negative, torch.isfinite(values))background_idxs=idx.sort(1)[1]<num_negativeN=max(1,num_foreground)return{"bbox_regression":bbox_loss.sum()/N,"classification":(cls_loss[foreground_idxs].sum()+cls_loss[background_idxs].sum())/N,}defforward(self,images:List[Tensor],targets:Optional[List[Dict[str,Tensor]]]=None)->Tuple[Dict[str,Tensor],List[Dict[str,Tensor]]]:ifself.training:iftargetsisNone:torch._assert(False,"targets should not be none when in training mode")else:fortargetintargets:boxes=target["boxes"]ifisinstance(boxes,torch.Tensor):torch._assert(len(boxes.shape)==2andboxes.shape[-1]==4,f"Expected target boxes to be a tensor of shape [N, 4], got {boxes.shape}.",)else:torch._assert(False,f"Expected target boxes to be of type Tensor, got {type(boxes)}.")# get the original image sizesoriginal_image_sizes:List[Tuple[int,int]]=[]forimginimages:val=img.shape[-2:]torch._assert(len(val)==2,f"expecting the last two dimensions of the Tensor to be H and W instead got {img.shape[-2:]}",)original_image_sizes.append((val[0],val[1]))# transform the inputimages,targets=self.transform(images,targets)# Check for degenerate boxesiftargetsisnotNone:fortarget_idx,targetinenumerate(targets):boxes=target["boxes"]degenerate_boxes=boxes[:,2:]<=boxes[:,:2]ifdegenerate_boxes.any():bb_idx=torch.where(degenerate_boxes.any(dim=1))[0][0]degen_bb:List[float]=boxes[bb_idx].tolist()torch._assert(False,"All bounding boxes should have positive height and width."f" Found invalid box {degen_bb} for target at index {target_idx}.",)# get the features from the backbonefeatures=self.backbone(images.tensors)ifisinstance(features,torch.Tensor):features=OrderedDict([("0",features)])features=list(features.values())# compute the ssd heads outputs using the featureshead_outputs=self.head(features)# create the set of anchorsanchors=self.anchor_generator(images,features)losses={}detections:List[Dict[str,Tensor]]=[]ifself.training:matched_idxs=[]iftargetsisNone:torch._assert(False,"targets should not be none when in training mode")else:foranchors_per_image,targets_per_imageinzip(anchors,targets):iftargets_per_image["boxes"].numel()==0:matched_idxs.append(torch.full((anchors_per_image.size(0),),-1,dtype=torch.int64,device=anchors_per_image.device))continuematch_quality_matrix=box_ops.box_iou(targets_per_image["boxes"],anchors_per_image)matched_idxs.append(self.proposal_matcher(match_quality_matrix))losses=self.compute_loss(targets,head_outputs,anchors,matched_idxs)else:detections=self.postprocess_detections(head_outputs,anchors,images.image_sizes)detections=self.transform.postprocess(detections,images.image_sizes,original_image_sizes)iftorch.jit.is_scripting():ifnotself._has_warned:warnings.warn("SSD always returns a (Losses, Detections) tuple in scripting")self._has_warned=Truereturnlosses,detectionsreturnself.eager_outputs(losses,detections)defpostprocess_detections(self,head_outputs:Dict[str,Tensor],image_anchors:List[Tensor],image_shapes:List[Tuple[int,int]])->List[Dict[str,Tensor]]:bbox_regression=head_outputs["bbox_regression"]pred_scores=F.softmax(head_outputs["cls_logits"],dim=-1)num_classes=pred_scores.size(-1)device=pred_scores.devicedetections:List[Dict[str,Tensor]]=[]forboxes,scores,anchors,image_shapeinzip(bbox_regression,pred_scores,image_anchors,image_shapes):boxes=self.box_coder.decode_single(boxes,anchors)boxes=box_ops.clip_boxes_to_image(boxes,image_shape)image_boxes=[]image_scores=[]image_labels=[]forlabelinrange(1,num_classes):score=scores[:,label]keep_idxs=score>self.score_threshscore=score[keep_idxs]box=boxes[keep_idxs]# keep only topk scoring predictionsnum_topk=det_utils._topk_min(score,self.topk_candidates,0)score,idxs=score.topk(num_topk)box=box[idxs]image_boxes.append(box)image_scores.append(score)image_labels.append(torch.full_like(score,fill_value=label,dtype=torch.int64,device=device))image_boxes=torch.cat(image_boxes,dim=0)image_scores=torch.cat(image_scores,dim=0)image_labels=torch.cat(image_labels,dim=0)# non-maximum suppressionkeep=box_ops.batched_nms(image_boxes,image_scores,image_labels,self.nms_thresh)keep=keep[:self.detections_per_img]detections.append({"boxes":image_boxes[keep],"scores":image_scores[keep],"labels":image_labels[keep],})returndetectionsclassSSDFeatureExtractorVGG(nn.Module):def__init__(self,backbone:nn.Module,highres:bool):super().__init__()_,_,maxpool3_pos,maxpool4_pos,_=(ifori,layerinenumerate(backbone)ifisinstance(layer,nn.MaxPool2d))# Patch ceil_mode for maxpool3 to get the same WxH output sizes as the paperbackbone[maxpool3_pos].ceil_mode=True# parameters used for L2 regularization + rescalingself.scale_weight=nn.Parameter(torch.ones(512)*20)# Multiple Feature maps - page 4, Fig 2 of SSD paperself.features=nn.Sequential(*backbone[:maxpool4_pos])# until conv4_3# SSD300 case - page 4, Fig 2 of SSD paperextra=nn.ModuleList([nn.Sequential(nn.Conv2d(1024,256,kernel_size=1),nn.ReLU(inplace=True),nn.Conv2d(256,512,kernel_size=3,padding=1,stride=2),# conv8_2nn.ReLU(inplace=True),),nn.Sequential(nn.Conv2d(512,128,kernel_size=1),nn.ReLU(inplace=True),nn.Conv2d(128,256,kernel_size=3,padding=1,stride=2),# conv9_2nn.ReLU(inplace=True),),nn.Sequential(nn.Conv2d(256,128,kernel_size=1),nn.ReLU(inplace=True),nn.Conv2d(128,256,kernel_size=3),# conv10_2nn.ReLU(inplace=True),),nn.Sequential(nn.Conv2d(256,128,kernel_size=1),nn.ReLU(inplace=True),nn.Conv2d(128,256,kernel_size=3),# conv11_2nn.ReLU(inplace=True),),])ifhighres:# Additional layers for the SSD512 case. See page 11, footernote 5.extra.append(nn.Sequential(nn.Conv2d(256,128,kernel_size=1),nn.ReLU(inplace=True),nn.Conv2d(128,256,kernel_size=4),# conv12_2nn.ReLU(inplace=True),))_xavier_init(extra)fc=nn.Sequential(nn.MaxPool2d(kernel_size=3,stride=1,padding=1,ceil_mode=False),# add modified maxpool5nn.Conv2d(in_channels=512,out_channels=1024,kernel_size=3,padding=6,dilation=6),# FC6 with atrousnn.ReLU(inplace=True),nn.Conv2d(in_channels=1024,out_channels=1024,kernel_size=1),# FC7nn.ReLU(inplace=True),)_xavier_init(fc)extra.insert(0,nn.Sequential(*backbone[maxpool4_pos:-1],# until conv5_3, skip maxpool5fc,),)self.extra=extradefforward(self,x:Tensor)->Dict[str,Tensor]:# L2 regularization + Rescaling of 1st block's feature mapx=self.features(x)rescaled=self.scale_weight.view(1,-1,1,1)*F.normalize(x)output=[rescaled]# Calculating Feature maps for the rest blocksforblockinself.extra:x=block(x)output.append(x)returnOrderedDict([(str(i),v)fori,vinenumerate(output)])def_vgg_extractor(backbone:VGG,highres:bool,trainable_layers:int):backbone=backbone.features# Gather the indices of maxpools. These are the locations of output blocks.stage_indices=[0]+[ifori,binenumerate(backbone)ifisinstance(b,nn.MaxPool2d)][:-1]num_stages=len(stage_indices)# find the index of the layer from which we won't freezetorch._assert(0<=trainable_layers<=num_stages,f"trainable_layers should be in the range [0, {num_stages}]. Instead got {trainable_layers}",)freeze_before=len(backbone)iftrainable_layers==0elsestage_indices[num_stages-trainable_layers]forbinbackbone[:freeze_before]:forparameterinb.parameters():parameter.requires_grad_(False)returnSSDFeatureExtractorVGG(backbone,highres)
[docs]@register_model()@handle_legacy_interface(weights=("pretrained",SSD300_VGG16_Weights.COCO_V1),weights_backbone=("pretrained_backbone",VGG16_Weights.IMAGENET1K_FEATURES),)defssd300_vgg16(*,weights:Optional[SSD300_VGG16_Weights]=None,progress:bool=True,num_classes:Optional[int]=None,weights_backbone:Optional[VGG16_Weights]=VGG16_Weights.IMAGENET1K_FEATURES,trainable_backbone_layers:Optional[int]=None,**kwargs:Any,)->SSD:"""The SSD300 model is based on the `SSD: Single Shot MultiBox Detector <https://arxiv.org/abs/1512.02325>`_ paper. .. betastatus:: detection module The input to the model is expected to be a list of tensors, each of shape [C, H, W], one for each image, and should be in 0-1 range. Different images can have different sizes, but they will be resized to a fixed size before passing it to the backbone. The behavior of the model changes depending on if it is in training or evaluation mode. During training, the model expects both the input tensors and targets (list of dictionary), containing: - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``. - labels (Int64Tensor[N]): the class label for each ground-truth box The model returns a Dict[Tensor] during training, containing the classification and regression losses. During inference, the model requires only the input tensors, and returns the post-processed predictions as a List[Dict[Tensor]], one for each input image. The fields of the Dict are as follows, where ``N`` is the number of detections: - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``. - labels (Int64Tensor[N]): the predicted labels for each detection - scores (Tensor[N]): the scores for each detection Example: >>> model = torchvision.models.detection.ssd300_vgg16(weights=SSD300_VGG16_Weights.DEFAULT) >>> model.eval() >>> x = [torch.rand(3, 300, 300), torch.rand(3, 500, 400)] >>> predictions = model(x) Args: weights (:class:`~torchvision.models.detection.SSD300_VGG16_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.detection.SSD300_VGG16_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr Default is True. num_classes (int, optional): number of output classes of the model (including the background) weights_backbone (:class:`~torchvision.models.VGG16_Weights`, optional): The pretrained weights for the backbone trainable_backbone_layers (int, optional): number of trainable (not frozen) layers starting from final block. Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable. If ``None`` is passed (the default) this value is set to 4. **kwargs: parameters passed to the ``torchvision.models.detection.SSD`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/detection/ssd.py>`_ for more details about this class. .. autoclass:: torchvision.models.detection.SSD300_VGG16_Weights :members: """weights=SSD300_VGG16_Weights.verify(weights)weights_backbone=VGG16_Weights.verify(weights_backbone)if"size"inkwargs:warnings.warn("The size of the model is already fixed; ignoring the parameter.")ifweightsisnotNone:weights_backbone=Nonenum_classes=_ovewrite_value_param("num_classes",num_classes,len(weights.meta["categories"]))elifnum_classesisNone:num_classes=91trainable_backbone_layers=_validate_trainable_layers(weightsisnotNoneorweights_backboneisnotNone,trainable_backbone_layers,5,4)# Use custom backbones more appropriate for SSDbackbone=vgg16(weights=weights_backbone,progress=progress)backbone=_vgg_extractor(backbone,False,trainable_backbone_layers)anchor_generator=DefaultBoxGenerator([[2],[2,3],[2,3],[2,3],[2],[2]],scales=[0.07,0.15,0.33,0.51,0.69,0.87,1.05],steps=[8,16,32,64,100,300],)defaults={# Rescale the input in a way compatible to the backbone"image_mean":[0.48235,0.45882,0.40784],"image_std":[1.0/255.0,1.0/255.0,1.0/255.0],# undo the 0-1 scaling of toTensor}kwargs:Any={**defaults,**kwargs}model=SSD(backbone,anchor_generator,(300,300),num_classes,**kwargs)ifweightsisnotNone:model.load_state_dict(weights.get_state_dict(progress=progress,check_hash=True))returnmodel
Docs
Access comprehensive developer documentation for PyTorch
To analyze traffic and optimize your experience, we serve cookies on this site. By clicking or navigating, you agree to allow our usage of cookies. As the current maintainers of this site, Facebook’s Cookies Policy applies. Learn more, including about available controls: Cookies Policy.