importmathimportwarningsfromcollectionsimportOrderedDictfromfunctoolsimportpartialfromtypingimportAny,Callable,Dict,List,Optional,Tupleimporttorchfromtorchimportnn,Tensorfrom...opsimportboxesasbox_ops,generalized_box_iou_loss,miscasmisc_nn_ops,sigmoid_focal_lossfrom...ops.feature_pyramid_networkimportLastLevelP6P7from...transforms._presetsimportObjectDetectionfrom...utilsimport_log_api_usage_oncefrom.._apiimportregister_model,Weights,WeightsEnumfrom.._metaimport_COCO_CATEGORIESfrom.._utilsimport_ovewrite_value_param,handle_legacy_interfacefrom..resnetimportresnet50,ResNet50_Weightsfrom.import_utilsasdet_utilsfrom.anchor_utilsimportAnchorGeneratorfrom.backbone_utilsimport_resnet_fpn_extractor,_validate_trainable_layersfrom.transformimportGeneralizedRCNNTransform__all__=["FCOS","FCOS_ResNet50_FPN_Weights","fcos_resnet50_fpn",]classFCOSHead(nn.Module):""" A regression and classification head for use in FCOS. Args: in_channels (int): number of channels of the input feature num_anchors (int): number of anchors to be predicted num_classes (int): number of classes to be predicted num_convs (Optional[int]): number of conv layer of head. Default: 4. """__annotations__={"box_coder":det_utils.BoxLinearCoder,}def__init__(self,in_channels:int,num_anchors:int,num_classes:int,num_convs:Optional[int]=4)->None:super().__init__()self.box_coder=det_utils.BoxLinearCoder(normalize_by_size=True)self.classification_head=FCOSClassificationHead(in_channels,num_anchors,num_classes,num_convs)self.regression_head=FCOSRegressionHead(in_channels,num_anchors,num_convs)defcompute_loss(self,targets:List[Dict[str,Tensor]],head_outputs:Dict[str,Tensor],anchors:List[Tensor],matched_idxs:List[Tensor],)->Dict[str,Tensor]:cls_logits=head_outputs["cls_logits"]# [N, HWA, C]bbox_regression=head_outputs["bbox_regression"]# [N, HWA, 4]bbox_ctrness=head_outputs["bbox_ctrness"]# [N, HWA, 1]all_gt_classes_targets=[]all_gt_boxes_targets=[]fortargets_per_image,matched_idxs_per_imageinzip(targets,matched_idxs):iflen(targets_per_image["labels"])==0:gt_classes_targets=targets_per_image["labels"].new_zeros((len(matched_idxs_per_image),))gt_boxes_targets=targets_per_image["boxes"].new_zeros((len(matched_idxs_per_image),4))else:gt_classes_targets=targets_per_image["labels"][matched_idxs_per_image.clip(min=0)]gt_boxes_targets=targets_per_image["boxes"][matched_idxs_per_image.clip(min=0)]gt_classes_targets[matched_idxs_per_image<0]=-1# backgroundall_gt_classes_targets.append(gt_classes_targets)all_gt_boxes_targets.append(gt_boxes_targets)# List[Tensor] to Tensor conversion of `all_gt_boxes_target`, `all_gt_classes_targets` and `anchors`all_gt_boxes_targets,all_gt_classes_targets,anchors=(torch.stack(all_gt_boxes_targets),torch.stack(all_gt_classes_targets),torch.stack(anchors),)# compute foregroudforegroud_mask=all_gt_classes_targets>=0num_foreground=foregroud_mask.sum().item()# classification lossgt_classes_targets=torch.zeros_like(cls_logits)gt_classes_targets[foregroud_mask,all_gt_classes_targets[foregroud_mask]]=1.0loss_cls=sigmoid_focal_loss(cls_logits,gt_classes_targets,reduction="sum")# amp issue: pred_boxes need to convert floatpred_boxes=self.box_coder.decode(bbox_regression,anchors)# regression loss: GIoU lossloss_bbox_reg=generalized_box_iou_loss(pred_boxes[foregroud_mask],all_gt_boxes_targets[foregroud_mask],reduction="sum",)# ctrness lossbbox_reg_targets=self.box_coder.encode(anchors,all_gt_boxes_targets)iflen(bbox_reg_targets)==0:gt_ctrness_targets=bbox_reg_targets.new_zeros(bbox_reg_targets.size()[:-1])else:left_right=bbox_reg_targets[:,:,[0,2]]top_bottom=bbox_reg_targets[:,:,[1,3]]gt_ctrness_targets=torch.sqrt((left_right.min(dim=-1)[0]/left_right.max(dim=-1)[0])*(top_bottom.min(dim=-1)[0]/top_bottom.max(dim=-1)[0]))pred_centerness=bbox_ctrness.squeeze(dim=2)loss_bbox_ctrness=nn.functional.binary_cross_entropy_with_logits(pred_centerness[foregroud_mask],gt_ctrness_targets[foregroud_mask],reduction="sum")return{"classification":loss_cls/max(1,num_foreground),"bbox_regression":loss_bbox_reg/max(1,num_foreground),"bbox_ctrness":loss_bbox_ctrness/max(1,num_foreground),}defforward(self,x:List[Tensor])->Dict[str,Tensor]:cls_logits=self.classification_head(x)bbox_regression,bbox_ctrness=self.regression_head(x)return{"cls_logits":cls_logits,"bbox_regression":bbox_regression,"bbox_ctrness":bbox_ctrness,}classFCOSClassificationHead(nn.Module):""" A classification head for use in FCOS. Args: in_channels (int): number of channels of the input feature. num_anchors (int): number of anchors to be predicted. num_classes (int): number of classes to be predicted. num_convs (Optional[int]): number of conv layer. Default: 4. prior_probability (Optional[float]): probability of prior. Default: 0.01. norm_layer: Module specifying the normalization layer to use. """def__init__(self,in_channels:int,num_anchors:int,num_classes:int,num_convs:int=4,prior_probability:float=0.01,norm_layer:Optional[Callable[...,nn.Module]]=None,)->None:super().__init__()self.num_classes=num_classesself.num_anchors=num_anchorsifnorm_layerisNone:norm_layer=partial(nn.GroupNorm,32)conv=[]for_inrange(num_convs):conv.append(nn.Conv2d(in_channels,in_channels,kernel_size=3,stride=1,padding=1))conv.append(norm_layer(in_channels))conv.append(nn.ReLU())self.conv=nn.Sequential(*conv)forlayerinself.conv.children():ifisinstance(layer,nn.Conv2d):torch.nn.init.normal_(layer.weight,std=0.01)torch.nn.init.constant_(layer.bias,0)self.cls_logits=nn.Conv2d(in_channels,num_anchors*num_classes,kernel_size=3,stride=1,padding=1)torch.nn.init.normal_(self.cls_logits.weight,std=0.01)torch.nn.init.constant_(self.cls_logits.bias,-math.log((1-prior_probability)/prior_probability))defforward(self,x:List[Tensor])->Tensor:all_cls_logits=[]forfeaturesinx:cls_logits=self.conv(features)cls_logits=self.cls_logits(cls_logits)# Permute classification output from (N, A * K, H, W) to (N, HWA, K).N,_,H,W=cls_logits.shapecls_logits=cls_logits.view(N,-1,self.num_classes,H,W)cls_logits=cls_logits.permute(0,3,4,1,2)cls_logits=cls_logits.reshape(N,-1,self.num_classes)# Size=(N, HWA, 4)all_cls_logits.append(cls_logits)returntorch.cat(all_cls_logits,dim=1)classFCOSRegressionHead(nn.Module):""" A regression head for use in FCOS, which combines regression branch and center-ness branch. This can obtain better performance. Reference: `FCOS: A simple and strong anchor-free object detector <https://arxiv.org/abs/2006.09214>`_. Args: in_channels (int): number of channels of the input feature num_anchors (int): number of anchors to be predicted num_convs (Optional[int]): number of conv layer. Default: 4. norm_layer: Module specifying the normalization layer to use. """def__init__(self,in_channels:int,num_anchors:int,num_convs:int=4,norm_layer:Optional[Callable[...,nn.Module]]=None,):super().__init__()ifnorm_layerisNone:norm_layer=partial(nn.GroupNorm,32)conv=[]for_inrange(num_convs):conv.append(nn.Conv2d(in_channels,in_channels,kernel_size=3,stride=1,padding=1))conv.append(norm_layer(in_channels))conv.append(nn.ReLU())self.conv=nn.Sequential(*conv)self.bbox_reg=nn.Conv2d(in_channels,num_anchors*4,kernel_size=3,stride=1,padding=1)self.bbox_ctrness=nn.Conv2d(in_channels,num_anchors*1,kernel_size=3,stride=1,padding=1)forlayerin[self.bbox_reg,self.bbox_ctrness]:torch.nn.init.normal_(layer.weight,std=0.01)torch.nn.init.zeros_(layer.bias)forlayerinself.conv.children():ifisinstance(layer,nn.Conv2d):torch.nn.init.normal_(layer.weight,std=0.01)torch.nn.init.zeros_(layer.bias)defforward(self,x:List[Tensor])->Tuple[Tensor,Tensor]:all_bbox_regression=[]all_bbox_ctrness=[]forfeaturesinx:bbox_feature=self.conv(features)bbox_regression=nn.functional.relu(self.bbox_reg(bbox_feature))bbox_ctrness=self.bbox_ctrness(bbox_feature)# permute bbox regression output from (N, 4 * A, H, W) to (N, HWA, 4).N,_,H,W=bbox_regression.shapebbox_regression=bbox_regression.view(N,-1,4,H,W)bbox_regression=bbox_regression.permute(0,3,4,1,2)bbox_regression=bbox_regression.reshape(N,-1,4)# Size=(N, HWA, 4)all_bbox_regression.append(bbox_regression)# permute bbox ctrness output from (N, 1 * A, H, W) to (N, HWA, 1).bbox_ctrness=bbox_ctrness.view(N,-1,1,H,W)bbox_ctrness=bbox_ctrness.permute(0,3,4,1,2)bbox_ctrness=bbox_ctrness.reshape(N,-1,1)all_bbox_ctrness.append(bbox_ctrness)returntorch.cat(all_bbox_regression,dim=1),torch.cat(all_bbox_ctrness,dim=1)classFCOS(nn.Module):""" Implements FCOS. The input to the model is expected to be a list of tensors, each of shape [C, H, W], one for each image, and should be in 0-1 range. Different images can have different sizes. The behavior of the model changes depending on if it is in training or evaluation mode. During training, the model expects both the input tensors and targets (list of dictionary), containing: - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``. - labels (Int64Tensor[N]): the class label for each ground-truth box The model returns a Dict[Tensor] during training, containing the classification, regression and centerness losses. During inference, the model requires only the input tensors, and returns the post-processed predictions as a List[Dict[Tensor]], one for each input image. The fields of the Dict are as follows: - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``. - labels (Int64Tensor[N]): the predicted labels for each image - scores (Tensor[N]): the scores for each prediction Args: backbone (nn.Module): the network used to compute the features for the model. It should contain an out_channels attribute, which indicates the number of output channels that each feature map has (and it should be the same for all feature maps). The backbone should return a single Tensor or an OrderedDict[Tensor]. num_classes (int): number of output classes of the model (including the background). min_size (int): Images are rescaled before feeding them to the backbone: we attempt to preserve the aspect ratio and scale the shorter edge to ``min_size``. If the resulting longer edge exceeds ``max_size``, then downscale so that the longer edge does not exceed ``max_size``. This may result in the shorter edge beeing lower than ``min_size``. max_size (int): See ``min_size``. image_mean (Tuple[float, float, float]): mean values used for input normalization. They are generally the mean values of the dataset on which the backbone has been trained on image_std (Tuple[float, float, float]): std values used for input normalization. They are generally the std values of the dataset on which the backbone has been trained on anchor_generator (AnchorGenerator): module that generates the anchors for a set of feature maps. For FCOS, only set one anchor for per position of each level, the width and height equal to the stride of feature map, and set aspect ratio = 1.0, so the center of anchor is equivalent to the point in FCOS paper. head (nn.Module): Module run on top of the feature pyramid. Defaults to a module containing a classification and regression module. center_sampling_radius (int): radius of the "center" of a groundtruth box, within which all anchor points are labeled positive. score_thresh (float): Score threshold used for postprocessing the detections. nms_thresh (float): NMS threshold used for postprocessing the detections. detections_per_img (int): Number of best detections to keep after NMS. topk_candidates (int): Number of best detections to keep before NMS. Example: >>> import torch >>> import torchvision >>> from torchvision.models.detection import FCOS >>> from torchvision.models.detection.anchor_utils import AnchorGenerator >>> # load a pre-trained model for classification and return >>> # only the features >>> backbone = torchvision.models.mobilenet_v2(weights=MobileNet_V2_Weights.DEFAULT).features >>> # FCOS needs to know the number of >>> # output channels in a backbone. For mobilenet_v2, it's 1280, >>> # so we need to add it here >>> backbone.out_channels = 1280 >>> >>> # let's make the network generate 5 x 3 anchors per spatial >>> # location, with 5 different sizes and 3 different aspect >>> # ratios. We have a Tuple[Tuple[int]] because each feature >>> # map could potentially have different sizes and >>> # aspect ratios >>> anchor_generator = AnchorGenerator( >>> sizes=((8,), (16,), (32,), (64,), (128,)), >>> aspect_ratios=((1.0,),) >>> ) >>> >>> # put the pieces together inside a FCOS model >>> model = FCOS( >>> backbone, >>> num_classes=80, >>> anchor_generator=anchor_generator, >>> ) >>> model.eval() >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)] >>> predictions = model(x) """__annotations__={"box_coder":det_utils.BoxLinearCoder,}def__init__(self,backbone:nn.Module,num_classes:int,# transform parametersmin_size:int=800,max_size:int=1333,image_mean:Optional[List[float]]=None,image_std:Optional[List[float]]=None,# Anchor parametersanchor_generator:Optional[AnchorGenerator]=None,head:Optional[nn.Module]=None,center_sampling_radius:float=1.5,score_thresh:float=0.2,nms_thresh:float=0.6,detections_per_img:int=100,topk_candidates:int=1000,**kwargs,):super().__init__()_log_api_usage_once(self)ifnothasattr(backbone,"out_channels"):raiseValueError("backbone should contain an attribute out_channels ""specifying the number of output channels (assumed to be the ""same for all the levels)")self.backbone=backboneifnotisinstance(anchor_generator,(AnchorGenerator,type(None))):raiseTypeError(f"anchor_generator should be of type AnchorGenerator or None, instead got {type(anchor_generator)}")ifanchor_generatorisNone:anchor_sizes=((8,),(16,),(32,),(64,),(128,))# equal to strides of multi-level feature mapaspect_ratios=((1.0,),)*len(anchor_sizes)# set only one anchoranchor_generator=AnchorGenerator(anchor_sizes,aspect_ratios)self.anchor_generator=anchor_generatorifself.anchor_generator.num_anchors_per_location()[0]!=1:raiseValueError(f"anchor_generator.num_anchors_per_location()[0] should be 1 instead of {anchor_generator.num_anchors_per_location()[0]}")ifheadisNone:head=FCOSHead(backbone.out_channels,anchor_generator.num_anchors_per_location()[0],num_classes)self.head=headself.box_coder=det_utils.BoxLinearCoder(normalize_by_size=True)ifimage_meanisNone:image_mean=[0.485,0.456,0.406]ifimage_stdisNone:image_std=[0.229,0.224,0.225]self.transform=GeneralizedRCNNTransform(min_size,max_size,image_mean,image_std,**kwargs)self.center_sampling_radius=center_sampling_radiusself.score_thresh=score_threshself.nms_thresh=nms_threshself.detections_per_img=detections_per_imgself.topk_candidates=topk_candidates# used only on torchscript modeself._has_warned=False@torch.jit.unuseddefeager_outputs(self,losses:Dict[str,Tensor],detections:List[Dict[str,Tensor]])->Tuple[Dict[str,Tensor],List[Dict[str,Tensor]]]:ifself.training:returnlossesreturndetectionsdefcompute_loss(self,targets:List[Dict[str,Tensor]],head_outputs:Dict[str,Tensor],anchors:List[Tensor],num_anchors_per_level:List[int],)->Dict[str,Tensor]:matched_idxs=[]foranchors_per_image,targets_per_imageinzip(anchors,targets):iftargets_per_image["boxes"].numel()==0:matched_idxs.append(torch.full((anchors_per_image.size(0),),-1,dtype=torch.int64,device=anchors_per_image.device))continuegt_boxes=targets_per_image["boxes"]gt_centers=(gt_boxes[:,:2]+gt_boxes[:,2:])/2# Nx2anchor_centers=(anchors_per_image[:,:2]+anchors_per_image[:,2:])/2# Nanchor_sizes=anchors_per_image[:,2]-anchors_per_image[:,0]# center sampling: anchor point must be close enough to gt center.pairwise_match=(anchor_centers[:,None,:]-gt_centers[None,:,:]).abs_().max(dim=2).values<self.center_sampling_radius*anchor_sizes[:,None]# compute pairwise distance between N points and M boxesx,y=anchor_centers.unsqueeze(dim=2).unbind(dim=1)# (N, 1)x0,y0,x1,y1=gt_boxes.unsqueeze(dim=0).unbind(dim=2)# (1, M)pairwise_dist=torch.stack([x-x0,y-y0,x1-x,y1-y],dim=2)# (N, M)# anchor point must be inside gtpairwise_match&=pairwise_dist.min(dim=2).values>0# each anchor is only responsible for certain scale range.lower_bound=anchor_sizes*4lower_bound[:num_anchors_per_level[0]]=0upper_bound=anchor_sizes*8upper_bound[-num_anchors_per_level[-1]:]=float("inf")pairwise_dist=pairwise_dist.max(dim=2).valuespairwise_match&=(pairwise_dist>lower_bound[:,None])&(pairwise_dist<upper_bound[:,None])# match the GT box with minimum area, if there are multiple GT matchesgt_areas=(gt_boxes[:,2]-gt_boxes[:,0])*(gt_boxes[:,3]-gt_boxes[:,1])# Npairwise_match=pairwise_match.to(torch.float32)*(1e8-gt_areas[None,:])min_values,matched_idx=pairwise_match.max(dim=1)# R, per-anchor matchmatched_idx[min_values<1e-5]=-1# unmatched anchors are assigned -1matched_idxs.append(matched_idx)returnself.head.compute_loss(targets,head_outputs,anchors,matched_idxs)defpostprocess_detections(self,head_outputs:Dict[str,List[Tensor]],anchors:List[List[Tensor]],image_shapes:List[Tuple[int,int]])->List[Dict[str,Tensor]]:class_logits=head_outputs["cls_logits"]box_regression=head_outputs["bbox_regression"]box_ctrness=head_outputs["bbox_ctrness"]num_images=len(image_shapes)detections:List[Dict[str,Tensor]]=[]forindexinrange(num_images):box_regression_per_image=[br[index]forbrinbox_regression]logits_per_image=[cl[index]forclinclass_logits]box_ctrness_per_image=[bc[index]forbcinbox_ctrness]anchors_per_image,image_shape=anchors[index],image_shapes[index]image_boxes=[]image_scores=[]image_labels=[]forbox_regression_per_level,logits_per_level,box_ctrness_per_level,anchors_per_levelinzip(box_regression_per_image,logits_per_image,box_ctrness_per_image,anchors_per_image):num_classes=logits_per_level.shape[-1]# remove low scoring boxesscores_per_level=torch.sqrt(torch.sigmoid(logits_per_level)*torch.sigmoid(box_ctrness_per_level)).flatten()keep_idxs=scores_per_level>self.score_threshscores_per_level=scores_per_level[keep_idxs]topk_idxs=torch.where(keep_idxs)[0]# keep only topk scoring predictionsnum_topk=det_utils._topk_min(topk_idxs,self.topk_candidates,0)scores_per_level,idxs=scores_per_level.topk(num_topk)topk_idxs=topk_idxs[idxs]anchor_idxs=torch.div(topk_idxs,num_classes,rounding_mode="floor")labels_per_level=topk_idxs%num_classesboxes_per_level=self.box_coder.decode(box_regression_per_level[anchor_idxs],anchors_per_level[anchor_idxs])boxes_per_level=box_ops.clip_boxes_to_image(boxes_per_level,image_shape)image_boxes.append(boxes_per_level)image_scores.append(scores_per_level)image_labels.append(labels_per_level)image_boxes=torch.cat(image_boxes,dim=0)image_scores=torch.cat(image_scores,dim=0)image_labels=torch.cat(image_labels,dim=0)# non-maximum suppressionkeep=box_ops.batched_nms(image_boxes,image_scores,image_labels,self.nms_thresh)keep=keep[:self.detections_per_img]detections.append({"boxes":image_boxes[keep],"scores":image_scores[keep],"labels":image_labels[keep],})returndetectionsdefforward(self,images:List[Tensor],targets:Optional[List[Dict[str,Tensor]]]=None,)->Tuple[Dict[str,Tensor],List[Dict[str,Tensor]]]:""" Args: images (list[Tensor]): images to be processed targets (list[Dict[Tensor]]): ground-truth boxes present in the image (optional) Returns: result (list[BoxList] or dict[Tensor]): the output from the model. During training, it returns a dict[Tensor] which contains the losses. During testing, it returns list[BoxList] contains additional fields like `scores`, `labels` and `mask` (for Mask R-CNN models). """ifself.training:iftargetsisNone:torch._assert(False,"targets should not be none when in training mode")else:fortargetintargets:boxes=target["boxes"]torch._assert(isinstance(boxes,torch.Tensor),"Expected target boxes to be of type Tensor.")torch._assert(len(boxes.shape)==2andboxes.shape[-1]==4,f"Expected target boxes to be a tensor of shape [N, 4], got {boxes.shape}.",)original_image_sizes:List[Tuple[int,int]]=[]forimginimages:val=img.shape[-2:]torch._assert(len(val)==2,f"expecting the last two dimensions of the Tensor to be H and W instead got {img.shape[-2:]}",)original_image_sizes.append((val[0],val[1]))# transform the inputimages,targets=self.transform(images,targets)# Check for degenerate boxesiftargetsisnotNone:fortarget_idx,targetinenumerate(targets):boxes=target["boxes"]degenerate_boxes=boxes[:,2:]<=boxes[:,:2]ifdegenerate_boxes.any():# print the first degenerate boxbb_idx=torch.where(degenerate_boxes.any(dim=1))[0][0]degen_bb:List[float]=boxes[bb_idx].tolist()torch._assert(False,f"All bounding boxes should have positive height and width. Found invalid box {degen_bb} for target at index {target_idx}.",)# get the features from the backbonefeatures=self.backbone(images.tensors)ifisinstance(features,torch.Tensor):features=OrderedDict([("0",features)])features=list(features.values())# compute the fcos heads outputs using the featureshead_outputs=self.head(features)# create the set of anchorsanchors=self.anchor_generator(images,features)# recover level sizesnum_anchors_per_level=[x.size(2)*x.size(3)forxinfeatures]losses={}detections:List[Dict[str,Tensor]]=[]ifself.training:iftargetsisNone:torch._assert(False,"targets should not be none when in training mode")else:# compute the losseslosses=self.compute_loss(targets,head_outputs,anchors,num_anchors_per_level)else:# split outputs per levelsplit_head_outputs:Dict[str,List[Tensor]]={}forkinhead_outputs:split_head_outputs[k]=list(head_outputs[k].split(num_anchors_per_level,dim=1))split_anchors=[list(a.split(num_anchors_per_level))forainanchors]# compute the detectionsdetections=self.postprocess_detections(split_head_outputs,split_anchors,images.image_sizes)detections=self.transform.postprocess(detections,images.image_sizes,original_image_sizes)iftorch.jit.is_scripting():ifnotself._has_warned:warnings.warn("FCOS always returns a (Losses, Detections) tuple in scripting")self._has_warned=Truereturnlosses,detectionsreturnself.eager_outputs(losses,detections)
[docs]classFCOS_ResNet50_FPN_Weights(WeightsEnum):COCO_V1=Weights(url="https://download.pytorch.org/models/fcos_resnet50_fpn_coco-99b0c9b7.pth",transforms=ObjectDetection,meta={"num_params":32269600,"categories":_COCO_CATEGORIES,"min_size":(1,1),"recipe":"https://github.com/pytorch/vision/tree/main/references/detection#fcos-resnet-50-fpn","_metrics":{"COCO-val2017":{"box_map":39.2,}},"_ops":128.207,"_file_size":123.608,"_docs":"""These weights were produced by following a similar training recipe as on the paper.""",},)DEFAULT=COCO_V1
[docs]@register_model()@handle_legacy_interface(weights=("pretrained",FCOS_ResNet50_FPN_Weights.COCO_V1),weights_backbone=("pretrained_backbone",ResNet50_Weights.IMAGENET1K_V1),)deffcos_resnet50_fpn(*,weights:Optional[FCOS_ResNet50_FPN_Weights]=None,progress:bool=True,num_classes:Optional[int]=None,weights_backbone:Optional[ResNet50_Weights]=ResNet50_Weights.IMAGENET1K_V1,trainable_backbone_layers:Optional[int]=None,**kwargs:Any,)->FCOS:""" Constructs a FCOS model with a ResNet-50-FPN backbone. .. betastatus:: detection module Reference: `FCOS: Fully Convolutional One-Stage Object Detection <https://arxiv.org/abs/1904.01355>`_. `FCOS: A simple and strong anchor-free object detector <https://arxiv.org/abs/2006.09214>`_. The input to the model is expected to be a list of tensors, each of shape ``[C, H, W]``, one for each image, and should be in ``0-1`` range. Different images can have different sizes. The behavior of the model changes depending on if it is in training or evaluation mode. During training, the model expects both the input tensors and targets (list of dictionary), containing: - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``. - labels (``Int64Tensor[N]``): the class label for each ground-truth box The model returns a ``Dict[Tensor]`` during training, containing the classification and regression losses. During inference, the model requires only the input tensors, and returns the post-processed predictions as a ``List[Dict[Tensor]]``, one for each input image. The fields of the ``Dict`` are as follows, where ``N`` is the number of detections: - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``. - labels (``Int64Tensor[N]``): the predicted labels for each detection - scores (``Tensor[N]``): the scores of each detection For more details on the output, you may refer to :ref:`instance_seg_output`. Example: >>> model = torchvision.models.detection.fcos_resnet50_fpn(weights=FCOS_ResNet50_FPN_Weights.DEFAULT) >>> model.eval() >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)] >>> predictions = model(x) Args: weights (:class:`~torchvision.models.detection.FCOS_ResNet50_FPN_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.detection.FCOS_ResNet50_FPN_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool): If True, displays a progress bar of the download to stderr num_classes (int, optional): number of output classes of the model (including the background) weights_backbone (:class:`~torchvision.models.ResNet50_Weights`, optional): The pretrained weights for the backbone. trainable_backbone_layers (int, optional): number of trainable (not frozen) resnet layers starting from final block. Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable. If ``None`` is passed (the default) this value is set to 3. Default: None **kwargs: parameters passed to the ``torchvision.models.detection.FCOS`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/detection/fcos.py>`_ for more details about this class. .. autoclass:: torchvision.models.detection.FCOS_ResNet50_FPN_Weights :members: """weights=FCOS_ResNet50_FPN_Weights.verify(weights)weights_backbone=ResNet50_Weights.verify(weights_backbone)ifweightsisnotNone:weights_backbone=Nonenum_classes=_ovewrite_value_param("num_classes",num_classes,len(weights.meta["categories"]))elifnum_classesisNone:num_classes=91is_trained=weightsisnotNoneorweights_backboneisnotNonetrainable_backbone_layers=_validate_trainable_layers(is_trained,trainable_backbone_layers,5,3)norm_layer=misc_nn_ops.FrozenBatchNorm2difis_trainedelsenn.BatchNorm2dbackbone=resnet50(weights=weights_backbone,progress=progress,norm_layer=norm_layer)backbone=_resnet_fpn_extractor(backbone,trainable_backbone_layers,returned_layers=[2,3,4],extra_blocks=LastLevelP6P7(256,256))model=FCOS(backbone,num_classes,**kwargs)ifweightsisnotNone:model.load_state_dict(weights.get_state_dict(progress=progress,check_hash=True))returnmodel
Docs
Access comprehensive developer documentation for PyTorch
To analyze traffic and optimize your experience, we serve cookies on this site. By clicking or navigating, you agree to allow our usage of cookies. As the current maintainers of this site, Facebook’s Cookies Policy applies. Learn more, including about available controls: Cookies Policy.