Source code for torchvision.io.image
from enum import Enum
from typing import List, Union
from warnings import warn
import torch
from ..extension import _load_library
from ..utils import _log_api_usage_once
try:
_load_library("image")
except (ImportError, OSError) as e:
warn(
f"Failed to load image Python extension: '{e}'"
f"If you don't plan on using image functionality from `torchvision.io`, you can ignore this warning. "
f"Otherwise, there might be something wrong with your environment. "
f"Did you have `libjpeg` or `libpng` installed before building `torchvision` from source?"
)
[docs]class ImageReadMode(Enum):
"""Allow automatic conversion to RGB, RGBA, etc while decoding.
.. note::
You don't need to use this struct, you can just pass strings to all
``mode`` parameters, e.g. ``mode="RGB"``.
The different available modes are the following.
- UNCHANGED: loads the image as-is
- RGB: converts to RGB
- RGBA: converts to RGB with transparency (also aliased as RGB_ALPHA)
- GRAY: converts to grayscale
- GRAY_ALPHA: converts to grayscale with transparency
.. note::
Some decoders won't support all possible values, e.g. GRAY and
GRAY_ALPHA are only supported for PNG and JPEG images.
"""
UNCHANGED = 0
GRAY = 1
GRAY_ALPHA = 2
RGB = 3
RGB_ALPHA = 4
RGBA = RGB_ALPHA # Alias for convenience
[docs]def read_file(path: str) -> torch.Tensor:
"""
Return the bytes contents of a file as a uint8 1D Tensor.
Args:
path (str or ``pathlib.Path``): the path to the file to be read
Returns:
data (Tensor)
"""
if not torch.jit.is_scripting() and not torch.jit.is_tracing():
_log_api_usage_once(read_file)
data = torch.ops.image.read_file(str(path))
return data
[docs]def write_file(filename: str, data: torch.Tensor) -> None:
"""
Write the content of an uint8 1D tensor to a file.
Args:
filename (str or ``pathlib.Path``): the path to the file to be written
data (Tensor): the contents to be written to the output file
"""
if not torch.jit.is_scripting() and not torch.jit.is_tracing():
_log_api_usage_once(write_file)
torch.ops.image.write_file(str(filename), data)
def decode_png(
input: torch.Tensor,
mode: ImageReadMode = ImageReadMode.UNCHANGED,
apply_exif_orientation: bool = False,
) -> torch.Tensor:
"""
Decodes a PNG image into a 3 dimensional RGB or grayscale Tensor.
The values of the output tensor are in uint8 in [0, 255] for most cases. If
the image is a 16-bit png, then the output tensor is uint16 in [0, 65535]
(supported from torchvision ``0.21``). Since uint16 support is limited in
pytorch, we recommend calling
:func:`torchvision.transforms.v2.functional.to_dtype()` with ``scale=True``
after this function to convert the decoded image into a uint8 or float
tensor.
Args:
input (Tensor[1]): a one dimensional uint8 tensor containing
the raw bytes of the PNG image.
mode (str or ImageReadMode): The mode to convert the image to, e.g. "RGB".
Default is "UNCHANGED". See :class:`~torchvision.io.ImageReadMode`
for available modes.
apply_exif_orientation (bool): apply EXIF orientation transformation to the output tensor.
Default: False.
Returns:
output (Tensor[image_channels, image_height, image_width])
"""
if not torch.jit.is_scripting() and not torch.jit.is_tracing():
_log_api_usage_once(decode_png)
if isinstance(mode, str):
mode = ImageReadMode[mode.upper()]
output = torch.ops.image.decode_png(input, mode.value, apply_exif_orientation)
return output
[docs]def encode_png(input: torch.Tensor, compression_level: int = 6) -> torch.Tensor:
"""
Takes an input tensor in CHW layout and returns a buffer with the contents
of its corresponding PNG file.
Args:
input (Tensor[channels, image_height, image_width]): int8 image tensor of
``c`` channels, where ``c`` must 3 or 1.
compression_level (int): Compression factor for the resulting file, it must be a number
between 0 and 9. Default: 6
Returns:
Tensor[1]: A one dimensional int8 tensor that contains the raw bytes of the
PNG file.
"""
if not torch.jit.is_scripting() and not torch.jit.is_tracing():
_log_api_usage_once(encode_png)
output = torch.ops.image.encode_png(input, compression_level)
return output
[docs]def write_png(input: torch.Tensor, filename: str, compression_level: int = 6):
"""
Takes an input tensor in CHW layout (or HW in the case of grayscale images)
and saves it in a PNG file.
Args:
input (Tensor[channels, image_height, image_width]): int8 image tensor of
``c`` channels, where ``c`` must be 1 or 3.
filename (str or ``pathlib.Path``): Path to save the image.
compression_level (int): Compression factor for the resulting file, it must be a number
between 0 and 9. Default: 6
"""
if not torch.jit.is_scripting() and not torch.jit.is_tracing():
_log_api_usage_once(write_png)
output = encode_png(input, compression_level)
write_file(filename, output)
[docs]def decode_jpeg(
input: Union[torch.Tensor, List[torch.Tensor]],
mode: ImageReadMode = ImageReadMode.UNCHANGED,
device: Union[str, torch.device] = "cpu",
apply_exif_orientation: bool = False,
) -> Union[torch.Tensor, List[torch.Tensor]]:
"""Decode JPEG image(s) into 3D RGB or grayscale Tensor(s), on CPU or CUDA.
The values of the output tensor are uint8 between 0 and 255.
.. note::
When using a CUDA device, passing a list of tensors is more efficient than repeated individual calls to ``decode_jpeg``.
When using CPU the performance is equivalent.
The CUDA version of this function has explicitly been designed with thread-safety in mind.
This function does not return partial results in case of an error.
Args:
input (Tensor[1] or list[Tensor[1]]): a (list of) one dimensional uint8 tensor(s) containing
the raw bytes of the JPEG image. The tensor(s) must be on CPU,
regardless of the ``device`` parameter.
mode (str or ImageReadMode): The mode to convert the image to, e.g. "RGB".
Default is "UNCHANGED". See :class:`~torchvision.io.ImageReadMode`
for available modes.
device (str or torch.device): The device on which the decoded image will
be stored. If a cuda device is specified, the image will be decoded
with `nvjpeg <https://developer.nvidia.com/nvjpeg>`_. This is only
supported for CUDA version >= 10.1
.. betastatus:: device parameter
.. warning::
There is a memory leak in the nvjpeg library for CUDA versions < 11.6.
Make sure to rely on CUDA 11.6 or above before using ``device="cuda"``.
apply_exif_orientation (bool): apply EXIF orientation transformation to the output tensor.
Default: False. Only implemented for JPEG format on CPU.
Returns:
output (Tensor[image_channels, image_height, image_width] or list[Tensor[image_channels, image_height, image_width]]):
The values of the output tensor(s) are uint8 between 0 and 255.
``output.device`` will be set to the specified ``device``
"""
if not torch.jit.is_scripting() and not torch.jit.is_tracing():
_log_api_usage_once(decode_jpeg)
if isinstance(device, str):
device = torch.device(device)
if isinstance(mode, str):
mode = ImageReadMode[mode.upper()]
if isinstance(input, list):
if len(input) == 0:
raise ValueError("Input list must contain at least one element")
if not all(isinstance(t, torch.Tensor) for t in input):
raise ValueError("All elements of the input list must be tensors.")
if not all(t.device.type == "cpu" for t in input):
raise ValueError("Input list must contain tensors on CPU.")
if device.type == "cuda":
return torch.ops.image.decode_jpegs_cuda(input, mode.value, device)
else:
return [torch.ops.image.decode_jpeg(img, mode.value, apply_exif_orientation) for img in input]
else: # input is tensor
if input.device.type != "cpu":
raise ValueError("Input tensor must be a CPU tensor")
if device.type == "cuda":
return torch.ops.image.decode_jpegs_cuda([input], mode.value, device)[0]
else:
return torch.ops.image.decode_jpeg(input, mode.value, apply_exif_orientation)
[docs]def encode_jpeg(
input: Union[torch.Tensor, List[torch.Tensor]], quality: int = 75
) -> Union[torch.Tensor, List[torch.Tensor]]:
"""Encode RGB tensor(s) into raw encoded jpeg bytes, on CPU or CUDA.
.. note::
Passing a list of CUDA tensors is more efficient than repeated individual calls to ``encode_jpeg``.
For CPU tensors the performance is equivalent.
Args:
input (Tensor[channels, image_height, image_width] or List[Tensor[channels, image_height, image_width]]):
(list of) uint8 image tensor(s) of ``c`` channels, where ``c`` must be 1 or 3
quality (int): Quality of the resulting JPEG file(s). Must be a number between
1 and 100. Default: 75
Returns:
output (Tensor[1] or list[Tensor[1]]): A (list of) one dimensional uint8 tensor(s) that contain the raw bytes of the JPEG file.
"""
if not torch.jit.is_scripting() and not torch.jit.is_tracing():
_log_api_usage_once(encode_jpeg)
if quality < 1 or quality > 100:
raise ValueError("Image quality should be a positive number between 1 and 100")
if isinstance(input, list):
if not input:
raise ValueError("encode_jpeg requires at least one input tensor when a list is passed")
if input[0].device.type == "cuda":
return torch.ops.image.encode_jpegs_cuda(input, quality)
else:
return [torch.ops.image.encode_jpeg(image, quality) for image in input]
else: # single input tensor
if input.device.type == "cuda":
return torch.ops.image.encode_jpegs_cuda([input], quality)[0]
else:
return torch.ops.image.encode_jpeg(input, quality)
[docs]def write_jpeg(input: torch.Tensor, filename: str, quality: int = 75):
"""
Takes an input tensor in CHW layout and saves it in a JPEG file.
Args:
input (Tensor[channels, image_height, image_width]): int8 image tensor of ``c``
channels, where ``c`` must be 1 or 3.
filename (str or ``pathlib.Path``): Path to save the image.
quality (int): Quality of the resulting JPEG file, it must be a number
between 1 and 100. Default: 75
"""
if not torch.jit.is_scripting() and not torch.jit.is_tracing():
_log_api_usage_once(write_jpeg)
output = encode_jpeg(input, quality)
assert isinstance(output, torch.Tensor) # Needed for torchscript
write_file(filename, output)
[docs]def decode_image(
input: Union[torch.Tensor, str],
mode: ImageReadMode = ImageReadMode.UNCHANGED,
apply_exif_orientation: bool = False,
) -> torch.Tensor:
"""Decode an image into a uint8 tensor, from a path or from raw encoded bytes.
Currently supported image formats are jpeg, png, gif and webp.
The values of the output tensor are in uint8 in [0, 255] for most cases.
If the image is a 16-bit png, then the output tensor is uint16 in [0, 65535]
(supported from torchvision ``0.21``). Since uint16 support is limited in
pytorch, we recommend calling
:func:`torchvision.transforms.v2.functional.to_dtype()` with ``scale=True``
after this function to convert the decoded image into a uint8 or float
tensor.
Args:
input (Tensor or str or ``pathlib.Path``): The image to decode. If a
tensor is passed, it must be one dimensional uint8 tensor containing
the raw bytes of the image. Otherwise, this must be a path to the image file.
mode (str or ImageReadMode): The mode to convert the image to, e.g. "RGB".
Default is "UNCHANGED". See :class:`~torchvision.io.ImageReadMode`
for available modes.
apply_exif_orientation (bool): apply EXIF orientation transformation to the output tensor.
Only applies to JPEG and PNG images. Default: False.
Returns:
output (Tensor[image_channels, image_height, image_width])
"""
if not torch.jit.is_scripting() and not torch.jit.is_tracing():
_log_api_usage_once(decode_image)
if not isinstance(input, torch.Tensor):
input = read_file(str(input))
if isinstance(mode, str):
mode = ImageReadMode[mode.upper()]
output = torch.ops.image.decode_image(input, mode.value, apply_exif_orientation)
return output
[docs]def read_image(
path: str,
mode: ImageReadMode = ImageReadMode.UNCHANGED,
apply_exif_orientation: bool = False,
) -> torch.Tensor:
"""[OBSOLETE] Use :func:`~torchvision.io.decode_image` instead."""
if not torch.jit.is_scripting() and not torch.jit.is_tracing():
_log_api_usage_once(read_image)
data = read_file(path)
return decode_image(data, mode, apply_exif_orientation=apply_exif_orientation)
[docs]def decode_gif(input: torch.Tensor) -> torch.Tensor:
"""
Decode a GIF image into a 3 or 4 dimensional RGB Tensor.
The values of the output tensor are uint8 between 0 and 255.
The output tensor has shape ``(C, H, W)`` if there is only one image in the
GIF, and ``(N, C, H, W)`` if there are ``N`` images.
Args:
input (Tensor[1]): a one dimensional contiguous uint8 tensor containing
the raw bytes of the GIF image.
Returns:
output (Tensor[image_channels, image_height, image_width] or Tensor[num_images, image_channels, image_height, image_width])
"""
if not torch.jit.is_scripting() and not torch.jit.is_tracing():
_log_api_usage_once(decode_gif)
return torch.ops.image.decode_gif(input)
[docs]def decode_webp(
input: torch.Tensor,
mode: ImageReadMode = ImageReadMode.UNCHANGED,
) -> torch.Tensor:
"""
Decode a WEBP image into a 3 dimensional RGB[A] Tensor.
The values of the output tensor are uint8 between 0 and 255.
Args:
input (Tensor[1]): a one dimensional contiguous uint8 tensor containing
the raw bytes of the WEBP image.
mode (str or ImageReadMode): The mode to convert the image to, e.g. "RGB".
Default is "UNCHANGED". See :class:`~torchvision.io.ImageReadMode`
for available modes.
Returns:
Decoded image (Tensor[image_channels, image_height, image_width])
"""
if not torch.jit.is_scripting() and not torch.jit.is_tracing():
_log_api_usage_once(decode_webp)
if isinstance(mode, str):
mode = ImageReadMode[mode.upper()]
return torch.ops.image.decode_webp(input, mode.value)
def _decode_avif(
input: torch.Tensor,
mode: ImageReadMode = ImageReadMode.UNCHANGED,
) -> torch.Tensor:
"""
Decode an AVIF image into a 3 dimensional RGB[A] Tensor.
The values of the output tensor are in uint8 in [0, 255] for most images. If
the image has a bit-depth of more than 8, then the output tensor is uint16
in [0, 65535]. Since uint16 support is limited in pytorch, we recommend
calling :func:`torchvision.transforms.v2.functional.to_dtype()` with
``scale=True`` after this function to convert the decoded image into a uint8
or float tensor.
Args:
input (Tensor[1]): a one dimensional contiguous uint8 tensor containing
the raw bytes of the AVIF image.
mode (str or ImageReadMode): The mode to convert the image to, e.g. "RGB".
Default is "UNCHANGED". See :class:`~torchvision.io.ImageReadMode`
for available modes.
Returns:
Decoded image (Tensor[image_channels, image_height, image_width])
"""
if not torch.jit.is_scripting() and not torch.jit.is_tracing():
_log_api_usage_once(_decode_avif)
if isinstance(mode, str):
mode = ImageReadMode[mode.upper()]
return torch.ops.image.decode_avif(input, mode.value)
def _decode_heic(input: torch.Tensor, mode: ImageReadMode = ImageReadMode.UNCHANGED) -> torch.Tensor:
"""
Decode an HEIC image into a 3 dimensional RGB[A] Tensor.
The values of the output tensor are in uint8 in [0, 255] for most images. If
the image has a bit-depth of more than 8, then the output tensor is uint16
in [0, 65535]. Since uint16 support is limited in pytorch, we recommend
calling :func:`torchvision.transforms.v2.functional.to_dtype()` with
``scale=True`` after this function to convert the decoded image into a uint8
or float tensor.
Args:
input (Tensor[1]): a one dimensional contiguous uint8 tensor containing
the raw bytes of the HEIC image.
mode (str or ImageReadMode): The mode to convert the image to, e.g. "RGB".
Default is "UNCHANGED". See :class:`~torchvision.io.ImageReadMode`
for available modes.
Returns:
Decoded image (Tensor[image_channels, image_height, image_width])
"""
if not torch.jit.is_scripting() and not torch.jit.is_tracing():
_log_api_usage_once(_decode_heic)
if isinstance(mode, str):
mode = ImageReadMode[mode.upper()]
return torch.ops.image.decode_heic(input, mode.value)