Source code for torchvision.datasets.usps
import os
from pathlib import Path
from typing import Any, Callable, Optional, Tuple, Union
import numpy as np
from PIL import Image
from .utils import download_url
from .vision import VisionDataset
[docs]class USPS(VisionDataset):
"""`USPS <https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#usps>`_ Dataset.
The data-format is : [label [index:value ]*256 \\n] * num_lines, where ``label`` lies in ``[1, 10]``.
The value for each pixel lies in ``[-1, 1]``. Here we transform the ``label`` into ``[0, 9]``
and make pixel values in ``[0, 255]``.
Args:
root (str or ``pathlib.Path``): Root directory of dataset to store``USPS`` data files.
train (bool, optional): If True, creates dataset from ``usps.bz2``,
otherwise from ``usps.t.bz2``.
transform (callable, optional): A function/transform that takes in a PIL image
and returns a transformed version. E.g, ``transforms.RandomCrop``
target_transform (callable, optional): A function/transform that takes in the
target and transforms it.
download (bool, optional): If true, downloads the dataset from the internet and
puts it in root directory. If dataset is already downloaded, it is not
downloaded again.
"""
split_list = {
"train": [
"https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass/usps.bz2",
"usps.bz2",
"ec16c51db3855ca6c91edd34d0e9b197",
],
"test": [
"https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass/usps.t.bz2",
"usps.t.bz2",
"8ea070ee2aca1ac39742fdd1ef5ed118",
],
}
def __init__(
self,
root: Union[str, Path],
train: bool = True,
transform: Optional[Callable] = None,
target_transform: Optional[Callable] = None,
download: bool = False,
) -> None:
super().__init__(root, transform=transform, target_transform=target_transform)
split = "train" if train else "test"
url, filename, checksum = self.split_list[split]
full_path = os.path.join(self.root, filename)
if download and not os.path.exists(full_path):
download_url(url, self.root, filename, md5=checksum)
import bz2
with bz2.open(full_path) as fp:
raw_data = [line.decode().split() for line in fp.readlines()]
tmp_list = [[x.split(":")[-1] for x in data[1:]] for data in raw_data]
imgs = np.asarray(tmp_list, dtype=np.float32).reshape((-1, 16, 16))
imgs = ((imgs + 1) / 2 * 255).astype(dtype=np.uint8)
targets = [int(d[0]) - 1 for d in raw_data]
self.data = imgs
self.targets = targets
[docs] def __getitem__(self, index: int) -> Tuple[Any, Any]:
"""
Args:
index (int): Index
Returns:
tuple: (image, target) where target is index of the target class.
"""
img, target = self.data[index], int(self.targets[index])
# doing this so that it is consistent with all other datasets
# to return a PIL Image
img = Image.fromarray(img, mode="L")
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target
def __len__(self) -> int:
return len(self.data)