Shortcuts

Source code for torchvision.datasets.usps

import os
from pathlib import Path
from typing import Any, Callable, Optional, Tuple, Union

import numpy as np
from PIL import Image

from .utils import download_url
from .vision import VisionDataset


[docs]class USPS(VisionDataset): """`USPS <https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#usps>`_ Dataset. The data-format is : [label [index:value ]*256 \\n] * num_lines, where ``label`` lies in ``[1, 10]``. The value for each pixel lies in ``[-1, 1]``. Here we transform the ``label`` into ``[0, 9]`` and make pixel values in ``[0, 255]``. Args: root (str or ``pathlib.Path``): Root directory of dataset to store``USPS`` data files. train (bool, optional): If True, creates dataset from ``usps.bz2``, otherwise from ``usps.t.bz2``. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. """ split_list = { "train": [ "https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass/usps.bz2", "usps.bz2", "ec16c51db3855ca6c91edd34d0e9b197", ], "test": [ "https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass/usps.t.bz2", "usps.t.bz2", "8ea070ee2aca1ac39742fdd1ef5ed118", ], } def __init__( self, root: Union[str, Path], train: bool = True, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) split = "train" if train else "test" url, filename, checksum = self.split_list[split] full_path = os.path.join(self.root, filename) if download and not os.path.exists(full_path): download_url(url, self.root, filename, md5=checksum) import bz2 with bz2.open(full_path) as fp: raw_data = [line.decode().split() for line in fp.readlines()] tmp_list = [[x.split(":")[-1] for x in data[1:]] for data in raw_data] imgs = np.asarray(tmp_list, dtype=np.float32).reshape((-1, 16, 16)) imgs = ((imgs + 1) / 2 * 255).astype(dtype=np.uint8) targets = [int(d[0]) - 1 for d in raw_data] self.data = imgs self.targets = targets
[docs] def __getitem__(self, index: int) -> Tuple[Any, Any]: """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ img, target = self.data[index], int(self.targets[index]) # doing this so that it is consistent with all other datasets # to return a PIL Image img = Image.fromarray(img, mode="L") if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target
def __len__(self) -> int: return len(self.data)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources