importosfrompathlibimportPathfromtypingimportAny,Callable,Dict,List,Optional,Tuple,Unionfrom.folderimportdefault_loaderfrom.utilsimportcheck_integrity,download_and_extract_archive,download_url,verify_str_argfrom.visionimportVisionDatasetclass_LFW(VisionDataset):base_folder="lfw-py"download_url_prefix="http://vis-www.cs.umass.edu/lfw/"file_dict={"original":("lfw","lfw.tgz","a17d05bd522c52d84eca14327a23d494"),"funneled":("lfw_funneled","lfw-funneled.tgz","1b42dfed7d15c9b2dd63d5e5840c86ad"),"deepfunneled":("lfw-deepfunneled","lfw-deepfunneled.tgz","68331da3eb755a505a502b5aacb3c201"),}checksums={"pairs.txt":"9f1ba174e4e1c508ff7cdf10ac338a7d","pairsDevTest.txt":"5132f7440eb68cf58910c8a45a2ac10b","pairsDevTrain.txt":"4f27cbf15b2da4a85c1907eb4181ad21","people.txt":"450f0863dd89e85e73936a6d71a3474b","peopleDevTest.txt":"e4bf5be0a43b5dcd9dc5ccfcb8fb19c5","peopleDevTrain.txt":"54eaac34beb6d042ed3a7d883e247a21","lfw-names.txt":"a6d0a479bd074669f656265a6e693f6d",}annot_file={"10fold":"","train":"DevTrain","test":"DevTest"}names="lfw-names.txt"def__init__(self,root:Union[str,Path],split:str,image_set:str,view:str,transform:Optional[Callable]=None,target_transform:Optional[Callable]=None,download:bool=False,loader:Callable[[str],Any]=default_loader,)->None:super().__init__(os.path.join(root,self.base_folder),transform=transform,target_transform=target_transform)self.image_set=verify_str_arg(image_set.lower(),"image_set",self.file_dict.keys())images_dir,self.filename,self.md5=self.file_dict[self.image_set]self.view=verify_str_arg(view.lower(),"view",["people","pairs"])self.split=verify_str_arg(split.lower(),"split",["10fold","train","test"])self.labels_file=f"{self.view}{self.annot_file[self.split]}.txt"self.data:List[Any]=[]ifdownload:self.download()ifnotself._check_integrity():raiseRuntimeError("Dataset not found or corrupted. You can use download=True to download it")self.images_dir=os.path.join(self.root,images_dir)self._loader=loaderdef_check_integrity(self)->bool:st1=check_integrity(os.path.join(self.root,self.filename),self.md5)st2=check_integrity(os.path.join(self.root,self.labels_file),self.checksums[self.labels_file])ifnotst1ornotst2:returnFalseifself.view=="people":returncheck_integrity(os.path.join(self.root,self.names),self.checksums[self.names])returnTruedefdownload(self)->None:ifself._check_integrity():returnurl=f"{self.download_url_prefix}{self.filename}"download_and_extract_archive(url,self.root,filename=self.filename,md5=self.md5)download_url(f"{self.download_url_prefix}{self.labels_file}",self.root)ifself.view=="people":download_url(f"{self.download_url_prefix}{self.names}",self.root)def_get_path(self,identity:str,no:Union[int,str])->str:returnos.path.join(self.images_dir,identity,f"{identity}_{int(no):04d}.jpg")defextra_repr(self)->str:returnf"Alignment: {self.image_set}\nSplit: {self.split}"def__len__(self)->int:returnlen(self.data)
[docs]classLFWPeople(_LFW):"""`LFW <http://vis-www.cs.umass.edu/lfw/>`_ Dataset. Args: root (str or ``pathlib.Path``): Root directory of dataset where directory ``lfw-py`` exists or will be saved to if download is set to True. split (string, optional): The image split to use. Can be one of ``train``, ``test``, ``10fold`` (default). image_set (str, optional): Type of image funneling to use, ``original``, ``funneled`` or ``deepfunneled``. Defaults to ``funneled``. transform (callable, optional): A function/transform that takes in a PIL image or torch.Tensor, depends on the given loader, and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. loader (callable, optional): A function to load an image given its path. By default, it uses PIL as its image loader, but users could also pass in ``torchvision.io.decode_image`` for decoding image data into tensors directly. """def__init__(self,root:str,split:str="10fold",image_set:str="funneled",transform:Optional[Callable]=None,target_transform:Optional[Callable]=None,download:bool=False,loader:Callable[[str],Any]=default_loader,)->None:super().__init__(root,split,image_set,"people",transform,target_transform,download,loader=loader)self.class_to_idx=self._get_classes()self.data,self.targets=self._get_people()def_get_people(self)->Tuple[List[str],List[int]]:data,targets=[],[]withopen(os.path.join(self.root,self.labels_file))asf:lines=f.readlines()n_folds,s=(int(lines[0]),1)ifself.split=="10fold"else(1,0)forfoldinrange(n_folds):n_lines=int(lines[s])people=[line.strip().split("\t")forlineinlines[s+1:s+n_lines+1]]s+=n_lines+1fori,(identity,num_imgs)inenumerate(people):fornuminrange(1,int(num_imgs)+1):img=self._get_path(identity,num)data.append(img)targets.append(self.class_to_idx[identity])returndata,targetsdef_get_classes(self)->Dict[str,int]:withopen(os.path.join(self.root,self.names))asf:lines=f.readlines()names=[line.strip().split()[0]forlineinlines]class_to_idx={name:ifori,nameinenumerate(names)}returnclass_to_idx
[docs]def__getitem__(self,index:int)->Tuple[Any,Any]:""" Args: index (int): Index Returns: tuple: Tuple (image, target) where target is the identity of the person. """img=self._loader(self.data[index])target=self.targets[index]ifself.transformisnotNone:img=self.transform(img)ifself.target_transformisnotNone:target=self.target_transform(target)returnimg,target
[docs]classLFWPairs(_LFW):"""`LFW <http://vis-www.cs.umass.edu/lfw/>`_ Dataset. Args: root (str or ``pathlib.Path``): Root directory of dataset where directory ``lfw-py`` exists or will be saved to if download is set to True. split (string, optional): The image split to use. Can be one of ``train``, ``test``, ``10fold``. Defaults to ``10fold``. image_set (str, optional): Type of image funneling to use, ``original``, ``funneled`` or ``deepfunneled``. Defaults to ``funneled``. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomRotation`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. loader (callable, optional): A function to load an image given its path. By default, it uses PIL as its image loader, but users could also pass in ``torchvision.io.decode_image`` for decoding image data into tensors directly. """def__init__(self,root:str,split:str="10fold",image_set:str="funneled",transform:Optional[Callable]=None,target_transform:Optional[Callable]=None,download:bool=False,loader:Callable[[str],Any]=default_loader,)->None:super().__init__(root,split,image_set,"pairs",transform,target_transform,download,loader=loader)self.pair_names,self.data,self.targets=self._get_pairs(self.images_dir)def_get_pairs(self,images_dir:str)->Tuple[List[Tuple[str,str]],List[Tuple[str,str]],List[int]]:pair_names,data,targets=[],[],[]withopen(os.path.join(self.root,self.labels_file))asf:lines=f.readlines()ifself.split=="10fold":n_folds,n_pairs=lines[0].split("\t")n_folds,n_pairs=int(n_folds),int(n_pairs)else:n_folds,n_pairs=1,int(lines[0])s=1forfoldinrange(n_folds):matched_pairs=[line.strip().split("\t")forlineinlines[s:s+n_pairs]]unmatched_pairs=[line.strip().split("\t")forlineinlines[s+n_pairs:s+(2*n_pairs)]]s+=2*n_pairsforpairinmatched_pairs:img1,img2,same=self._get_path(pair[0],pair[1]),self._get_path(pair[0],pair[2]),1pair_names.append((pair[0],pair[0]))data.append((img1,img2))targets.append(same)forpairinunmatched_pairs:img1,img2,same=self._get_path(pair[0],pair[1]),self._get_path(pair[2],pair[3]),0pair_names.append((pair[0],pair[2]))data.append((img1,img2))targets.append(same)returnpair_names,data,targets
[docs]def__getitem__(self,index:int)->Tuple[Any,Any,int]:""" Args: index (int): Index Returns: tuple: (image1, image2, target) where target is `0` for different indentities and `1` for same identities. """img1,img2=self.data[index]img1,img2=self._loader(img1),self._loader(img2)target=self.targets[index]ifself.transformisnotNone:img1,img2=self.transform(img1),self.transform(img2)ifself.target_transformisnotNone:target=self.target_transform(target)returnimg1,img2,target
Docs
Access comprehensive developer documentation for PyTorch
To analyze traffic and optimize your experience, we serve cookies on this site. By clicking or navigating, you agree to allow our usage of cookies. As the current maintainers of this site, Facebook’s Cookies Policy applies. Learn more, including about available controls: Cookies Policy.