[docs]classImagenette(VisionDataset):"""`Imagenette <https://github.com/fastai/imagenette#imagenette-1>`_ image classification dataset. Args: root (str or ``pathlib.Path``): Root directory of the Imagenette dataset. split (string, optional): The dataset split. Supports ``"train"`` (default), and ``"val"``. size (string, optional): The image size. Supports ``"full"`` (default), ``"320px"``, and ``"160px"``. download (bool, optional): If ``True``, downloads the dataset components and places them in ``root``. Already downloaded archives are not downloaded again. transform (callable, optional): A function/transform that takes in a PIL image or torch.Tensor, depends on the given loader, and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. loader (callable, optional): A function to load an image given its path. By default, it uses PIL as its image loader, but users could also pass in ``torchvision.io.decode_image`` for decoding image data into tensors directly. Attributes: classes (list): List of the class name tuples. class_to_idx (dict): Dict with items (class name, class index). wnids (list): List of the WordNet IDs. wnid_to_idx (dict): Dict with items (WordNet ID, class index). """_ARCHIVES={"full":("https://s3.amazonaws.com/fast-ai-imageclas/imagenette2.tgz","fe2fc210e6bb7c5664d602c3cd71e612"),"320px":("https://s3.amazonaws.com/fast-ai-imageclas/imagenette2-320.tgz","3df6f0d01a2c9592104656642f5e78a3"),"160px":("https://s3.amazonaws.com/fast-ai-imageclas/imagenette2-160.tgz","e793b78cc4c9e9a4ccc0c1155377a412"),}_WNID_TO_CLASS={"n01440764":("tench","Tinca tinca"),"n02102040":("English springer","English springer spaniel"),"n02979186":("cassette player",),"n03000684":("chain saw","chainsaw"),"n03028079":("church","church building"),"n03394916":("French horn","horn"),"n03417042":("garbage truck","dustcart"),"n03425413":("gas pump","gasoline pump","petrol pump","island dispenser"),"n03445777":("golf ball",),"n03888257":("parachute","chute"),}def__init__(self,root:Union[str,Path],split:str="train",size:str="full",download=False,transform:Optional[Callable]=None,target_transform:Optional[Callable]=None,loader:Callable[[str],Any]=default_loader,)->None:super().__init__(root,transform=transform,target_transform=target_transform)self._split=verify_str_arg(split,"split",["train","val"])self._size=verify_str_arg(size,"size",["full","320px","160px"])self._url,self._md5=self._ARCHIVES[self._size]self._size_root=Path(self.root)/Path(self._url).stemself._image_root=str(self._size_root/self._split)ifdownload:self._download()elifnotself._check_exists():raiseRuntimeError("Dataset not found. You can use download=True to download it.")self.wnids,self.wnid_to_idx=find_classes(self._image_root)self.classes=[self._WNID_TO_CLASS[wnid]forwnidinself.wnids]self.class_to_idx={class_name:idxforwnid,idxinself.wnid_to_idx.items()forclass_nameinself._WNID_TO_CLASS[wnid]}self._samples=make_dataset(self._image_root,self.wnid_to_idx,extensions=".jpeg")self.loader=loaderdef_check_exists(self)->bool:returnself._size_root.exists()def_download(self):ifself._check_exists():returndownload_and_extract_archive(self._url,self.root,md5=self._md5)
To analyze traffic and optimize your experience, we serve cookies on this site. By clicking or navigating, you agree to allow our usage of cookies. As the current maintainers of this site, Facebook’s Cookies Policy applies. Learn more, including about available controls: Cookies Policy.