[docs]classToTensor(Transform):"""[DEPRECATED] Use ``v2.Compose([v2.ToImage(), v2.ToDtype(torch.float32, scale=True)])`` instead. Convert a PIL Image or ndarray to tensor and scale the values accordingly. .. warning:: :class:`v2.ToTensor` is deprecated and will be removed in a future release. Please use instead ``v2.Compose([v2.ToImage(), v2.ToDtype(torch.float32, scale=True)])``. Output is equivalent up to float precision. This transform does not support torchscript. Converts a PIL Image or numpy.ndarray (H x W x C) in the range [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0] if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1) or if the numpy.ndarray has dtype = np.uint8 In the other cases, tensors are returned without scaling. .. note:: Because the input image is scaled to [0.0, 1.0], this transformation should not be used when transforming target image masks. See the `references`_ for implementing the transforms for image masks. .. _references: https://github.com/pytorch/vision/tree/main/references/segmentation """_transformed_types=(PIL.Image.Image,np.ndarray)def__init__(self)->None:warnings.warn("The transform `ToTensor()` is deprecated and will be removed in a future release. ""Instead, please use `v2.Compose([v2.ToImage(), v2.ToDtype(torch.float32, scale=True)])`.""Output is equivalent up to float precision.")super().__init__()
To analyze traffic and optimize your experience, we serve cookies on this site. By clicking or navigating, you agree to allow our usage of cookies. As the current maintainers of this site, Facebook’s Cookies Policy applies. Learn more, including about available controls: Cookies Policy.