RandomZoomOut¶
- class torchvision.transforms.v2.RandomZoomOut(fill: Union[int, float, Sequence[int], Sequence[float], None, Dict[Union[Type, str], Optional[Union[int, float, Sequence[int], Sequence[float]]]]] = 0, side_range: Sequence[float] = (1.0, 4.0), p: float = 0.5)[source]¶
“Zoom out” transformation from “SSD: Single Shot MultiBox Detector”.
This transformation randomly pads images, videos, bounding boxes and masks creating a zoom out effect. Output spatial size is randomly sampled from original size up to a maximum size configured with
side_range
parameter:r = uniform_sample(side_range[0], side_range[1]) output_width = input_width * r output_height = input_height * r
If the input is a
torch.Tensor
or aTVTensor
(e.g.Image
,Video
,BoundingBoxes
etc.) it can have arbitrary number of leading batch dimensions. For example, the image can have[..., C, H, W]
shape. A bounding box can have[..., 4]
shape.- Parameters:
fill (number or tuple or dict, optional) – Pixel fill value used when the
padding_mode
is constant. Default is 0. If a tuple of length 3, it is used to fill R, G, B channels respectively. Fill value can be also a dictionary mapping data type to the fill value, e.g.fill={tv_tensors.Image: 127, tv_tensors.Mask: 0}
whereImage
will be filled with 127 andMask
will be filled with 0.side_range (sequence of python:floats, optional) – tuple of two floats defines minimum and maximum factors to scale the input size.
p (float, optional) – probability that the zoom operation will be performed.
Examples using
RandomZoomOut
:Transforms v2: End-to-end object detection/segmentation example
Transforms v2: End-to-end object detection/segmentation example