Shortcuts

Source code for torchvision.tv_tensors

import torch

from ._bounding_boxes import BoundingBoxes, BoundingBoxFormat
from ._image import Image
from ._mask import Mask
from ._torch_function_helpers import set_return_type
from ._tv_tensor import TVTensor
from ._video import Video


# TODO: Fix this. We skip this method as it leads to
# RecursionError: maximum recursion depth exceeded while calling a Python object
# Until `disable` is removed, there will be graph breaks after all calls to functional transforms
[docs]@torch.compiler.disable def wrap(wrappee, *, like, **kwargs): """Convert a :class:`torch.Tensor` (``wrappee``) into the same :class:`~torchvision.tv_tensors.TVTensor` subclass as ``like``. If ``like`` is a :class:`~torchvision.tv_tensors.BoundingBoxes`, the ``format`` and ``canvas_size`` of ``like`` are assigned to ``wrappee``, unless they are passed as ``kwargs``. Args: wrappee (Tensor): The tensor to convert. like (:class:`~torchvision.tv_tensors.TVTensor`): The reference. ``wrappee`` will be converted into the same subclass as ``like``. kwargs: Can contain "format" and "canvas_size" if ``like`` is a :class:`~torchvision.tv_tensor.BoundingBoxes`. Ignored otherwise. """ if isinstance(like, BoundingBoxes): return BoundingBoxes._wrap( wrappee, format=kwargs.get("format", like.format), canvas_size=kwargs.get("canvas_size", like.canvas_size), ) else: return wrappee.as_subclass(type(like))

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources