Source code for torchvision.transforms.v2.functional._geometry
import math
import numbers
import warnings
from typing import Any, List, Optional, Sequence, Tuple, Union
import PIL.Image
import torch
from torch.nn.functional import grid_sample, interpolate, pad as torch_pad
from torchvision import tv_tensors
from torchvision.transforms import _functional_pil as _FP
from torchvision.transforms._functional_tensor import _pad_symmetric
from torchvision.transforms.functional import (
_compute_resized_output_size as __compute_resized_output_size,
_get_perspective_coeffs,
_interpolation_modes_from_int,
InterpolationMode,
pil_modes_mapping,
pil_to_tensor,
to_pil_image,
)
from torchvision.utils import _log_api_usage_once
from ._meta import _get_size_image_pil, clamp_bounding_boxes, convert_bounding_box_format
from ._utils import _FillTypeJIT, _get_kernel, _register_five_ten_crop_kernel_internal, _register_kernel_internal
def _check_interpolation(interpolation: Union[InterpolationMode, int]) -> InterpolationMode:
if isinstance(interpolation, int):
interpolation = _interpolation_modes_from_int(interpolation)
elif not isinstance(interpolation, InterpolationMode):
raise ValueError(
f"Argument interpolation should be an `InterpolationMode` or a corresponding Pillow integer constant, "
f"but got {interpolation}."
)
return interpolation
[docs]def horizontal_flip(inpt: torch.Tensor) -> torch.Tensor:
"""See :class:`~torchvision.transforms.v2.RandomHorizontalFlip` for details."""
if torch.jit.is_scripting():
return horizontal_flip_image(inpt)
_log_api_usage_once(horizontal_flip)
kernel = _get_kernel(horizontal_flip, type(inpt))
return kernel(inpt)
@_register_kernel_internal(horizontal_flip, torch.Tensor)
@_register_kernel_internal(horizontal_flip, tv_tensors.Image)
def horizontal_flip_image(image: torch.Tensor) -> torch.Tensor:
return image.flip(-1)
@_register_kernel_internal(horizontal_flip, PIL.Image.Image)
def _horizontal_flip_image_pil(image: PIL.Image.Image) -> PIL.Image.Image:
return _FP.hflip(image)
@_register_kernel_internal(horizontal_flip, tv_tensors.Mask)
def horizontal_flip_mask(mask: torch.Tensor) -> torch.Tensor:
return horizontal_flip_image(mask)
def horizontal_flip_bounding_boxes(
bounding_boxes: torch.Tensor, format: tv_tensors.BoundingBoxFormat, canvas_size: Tuple[int, int]
) -> torch.Tensor:
shape = bounding_boxes.shape
bounding_boxes = bounding_boxes.clone().reshape(-1, 4)
if format == tv_tensors.BoundingBoxFormat.XYXY:
bounding_boxes[:, [2, 0]] = bounding_boxes[:, [0, 2]].sub_(canvas_size[1]).neg_()
elif format == tv_tensors.BoundingBoxFormat.XYWH:
bounding_boxes[:, 0].add_(bounding_boxes[:, 2]).sub_(canvas_size[1]).neg_()
else: # format == tv_tensors.BoundingBoxFormat.CXCYWH:
bounding_boxes[:, 0].sub_(canvas_size[1]).neg_()
return bounding_boxes.reshape(shape)
@_register_kernel_internal(horizontal_flip, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
def _horizontal_flip_bounding_boxes_dispatch(inpt: tv_tensors.BoundingBoxes) -> tv_tensors.BoundingBoxes:
output = horizontal_flip_bounding_boxes(
inpt.as_subclass(torch.Tensor), format=inpt.format, canvas_size=inpt.canvas_size
)
return tv_tensors.wrap(output, like=inpt)
@_register_kernel_internal(horizontal_flip, tv_tensors.Video)
def horizontal_flip_video(video: torch.Tensor) -> torch.Tensor:
return horizontal_flip_image(video)
[docs]def vertical_flip(inpt: torch.Tensor) -> torch.Tensor:
"""See :class:`~torchvision.transforms.v2.RandomVerticalFlip` for details."""
if torch.jit.is_scripting():
return vertical_flip_image(inpt)
_log_api_usage_once(vertical_flip)
kernel = _get_kernel(vertical_flip, type(inpt))
return kernel(inpt)
@_register_kernel_internal(vertical_flip, torch.Tensor)
@_register_kernel_internal(vertical_flip, tv_tensors.Image)
def vertical_flip_image(image: torch.Tensor) -> torch.Tensor:
return image.flip(-2)
@_register_kernel_internal(vertical_flip, PIL.Image.Image)
def _vertical_flip_image_pil(image: PIL.Image) -> PIL.Image:
return _FP.vflip(image)
@_register_kernel_internal(vertical_flip, tv_tensors.Mask)
def vertical_flip_mask(mask: torch.Tensor) -> torch.Tensor:
return vertical_flip_image(mask)
def vertical_flip_bounding_boxes(
bounding_boxes: torch.Tensor, format: tv_tensors.BoundingBoxFormat, canvas_size: Tuple[int, int]
) -> torch.Tensor:
shape = bounding_boxes.shape
bounding_boxes = bounding_boxes.clone().reshape(-1, 4)
if format == tv_tensors.BoundingBoxFormat.XYXY:
bounding_boxes[:, [1, 3]] = bounding_boxes[:, [3, 1]].sub_(canvas_size[0]).neg_()
elif format == tv_tensors.BoundingBoxFormat.XYWH:
bounding_boxes[:, 1].add_(bounding_boxes[:, 3]).sub_(canvas_size[0]).neg_()
else: # format == tv_tensors.BoundingBoxFormat.CXCYWH:
bounding_boxes[:, 1].sub_(canvas_size[0]).neg_()
return bounding_boxes.reshape(shape)
@_register_kernel_internal(vertical_flip, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
def _vertical_flip_bounding_boxes_dispatch(inpt: tv_tensors.BoundingBoxes) -> tv_tensors.BoundingBoxes:
output = vertical_flip_bounding_boxes(
inpt.as_subclass(torch.Tensor), format=inpt.format, canvas_size=inpt.canvas_size
)
return tv_tensors.wrap(output, like=inpt)
@_register_kernel_internal(vertical_flip, tv_tensors.Video)
def vertical_flip_video(video: torch.Tensor) -> torch.Tensor:
return vertical_flip_image(video)
# We changed the names to align them with the transforms, i.e. `RandomHorizontalFlip`. Still, `hflip` and `vflip` are
# prevalent and well understood. Thus, we just alias them without deprecating the old names.
hflip = horizontal_flip
vflip = vertical_flip
def _compute_resized_output_size(
canvas_size: Tuple[int, int], size: List[int], max_size: Optional[int] = None
) -> List[int]:
if isinstance(size, int):
size = [size]
elif max_size is not None and len(size) != 1:
raise ValueError(
"max_size should only be passed if size specifies the length of the smaller edge, "
"i.e. size should be an int or a sequence of length 1 in torchscript mode."
)
return __compute_resized_output_size(canvas_size, size=size, max_size=max_size)
[docs]def resize(
inpt: torch.Tensor,
size: List[int],
interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
max_size: Optional[int] = None,
antialias: Optional[bool] = True,
) -> torch.Tensor:
"""See :class:`~torchvision.transforms.v2.Resize` for details."""
if torch.jit.is_scripting():
return resize_image(inpt, size=size, interpolation=interpolation, max_size=max_size, antialias=antialias)
_log_api_usage_once(resize)
kernel = _get_kernel(resize, type(inpt))
return kernel(inpt, size=size, interpolation=interpolation, max_size=max_size, antialias=antialias)
# This is an internal helper method for resize_image. We should put it here instead of keeping it
# inside resize_image due to torchscript.
# uint8 dtype support for bilinear and bicubic is limited to cpu and
# according to our benchmarks on eager, non-AVX CPUs should still prefer u8->f32->interpolate->u8 path for bilinear
def _do_native_uint8_resize_on_cpu(interpolation: InterpolationMode) -> bool:
if interpolation == InterpolationMode.BILINEAR:
if torch._dynamo.is_compiling():
return True
else:
return "AVX2" in torch.backends.cpu.get_cpu_capability()
return interpolation == InterpolationMode.BICUBIC
@_register_kernel_internal(resize, torch.Tensor)
@_register_kernel_internal(resize, tv_tensors.Image)
def resize_image(
image: torch.Tensor,
size: List[int],
interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
max_size: Optional[int] = None,
antialias: Optional[bool] = True,
) -> torch.Tensor:
interpolation = _check_interpolation(interpolation)
antialias = False if antialias is None else antialias
align_corners: Optional[bool] = None
if interpolation == InterpolationMode.BILINEAR or interpolation == InterpolationMode.BICUBIC:
align_corners = False
else:
# The default of antialias is True from 0.17, so we don't warn or
# error if other interpolation modes are used. This is documented.
antialias = False
shape = image.shape
numel = image.numel()
num_channels, old_height, old_width = shape[-3:]
new_height, new_width = _compute_resized_output_size((old_height, old_width), size=size, max_size=max_size)
if (new_height, new_width) == (old_height, old_width):
return image
elif numel > 0:
dtype = image.dtype
acceptable_dtypes = [torch.float32, torch.float64]
if interpolation == InterpolationMode.NEAREST or interpolation == InterpolationMode.NEAREST_EXACT:
# uint8 dtype can be included for cpu and cuda input if nearest mode
acceptable_dtypes.append(torch.uint8)
elif image.device.type == "cpu":
if _do_native_uint8_resize_on_cpu(interpolation):
acceptable_dtypes.append(torch.uint8)
image = image.reshape(-1, num_channels, old_height, old_width)
strides = image.stride()
if image.is_contiguous(memory_format=torch.channels_last) and image.shape[0] == 1 and numel != strides[0]:
# There is a weird behaviour in torch core where the output tensor of `interpolate()` can be allocated as
# contiguous even though the input is un-ambiguously channels_last (https://github.com/pytorch/pytorch/issues/68430).
# In particular this happens for the typical torchvision use-case of single CHW images where we fake the batch dim
# to become 1CHW. Below, we restride those tensors to trick torch core into properly allocating the output as
# channels_last, thus preserving the memory format of the input. This is not just for format consistency:
# for uint8 bilinear images, this also avoids an extra copy (re-packing) of the output and saves time.
# TODO: when https://github.com/pytorch/pytorch/issues/68430 is fixed (possibly by https://github.com/pytorch/pytorch/pull/100373),
# we should be able to remove this hack.
new_strides = list(strides)
new_strides[0] = numel
image = image.as_strided((1, num_channels, old_height, old_width), new_strides)
need_cast = dtype not in acceptable_dtypes
if need_cast:
image = image.to(dtype=torch.float32)
image = interpolate(
image,
size=[new_height, new_width],
mode=interpolation.value,
align_corners=align_corners,
antialias=antialias,
)
if need_cast:
if interpolation == InterpolationMode.BICUBIC and dtype == torch.uint8:
# This path is hit on non-AVX archs, or on GPU.
image = image.clamp_(min=0, max=255)
if dtype in (torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64):
image = image.round_()
image = image.to(dtype=dtype)
return image.reshape(shape[:-3] + (num_channels, new_height, new_width))
def _resize_image_pil(
image: PIL.Image.Image,
size: Union[Sequence[int], int],
interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
max_size: Optional[int] = None,
) -> PIL.Image.Image:
old_height, old_width = image.height, image.width
new_height, new_width = _compute_resized_output_size(
(old_height, old_width),
size=size, # type: ignore[arg-type]
max_size=max_size,
)
interpolation = _check_interpolation(interpolation)
if (new_height, new_width) == (old_height, old_width):
return image
return image.resize((new_width, new_height), resample=pil_modes_mapping[interpolation])
@_register_kernel_internal(resize, PIL.Image.Image)
def __resize_image_pil_dispatch(
image: PIL.Image.Image,
size: Union[Sequence[int], int],
interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
max_size: Optional[int] = None,
antialias: Optional[bool] = True,
) -> PIL.Image.Image:
if antialias is False:
warnings.warn("Anti-alias option is always applied for PIL Image input. Argument antialias is ignored.")
return _resize_image_pil(image, size=size, interpolation=interpolation, max_size=max_size)
def resize_mask(mask: torch.Tensor, size: List[int], max_size: Optional[int] = None) -> torch.Tensor:
if mask.ndim < 3:
mask = mask.unsqueeze(0)
needs_squeeze = True
else:
needs_squeeze = False
output = resize_image(mask, size=size, interpolation=InterpolationMode.NEAREST, max_size=max_size)
if needs_squeeze:
output = output.squeeze(0)
return output
@_register_kernel_internal(resize, tv_tensors.Mask, tv_tensor_wrapper=False)
def _resize_mask_dispatch(
inpt: tv_tensors.Mask, size: List[int], max_size: Optional[int] = None, **kwargs: Any
) -> tv_tensors.Mask:
output = resize_mask(inpt.as_subclass(torch.Tensor), size, max_size=max_size)
return tv_tensors.wrap(output, like=inpt)
def resize_bounding_boxes(
bounding_boxes: torch.Tensor, canvas_size: Tuple[int, int], size: List[int], max_size: Optional[int] = None
) -> Tuple[torch.Tensor, Tuple[int, int]]:
old_height, old_width = canvas_size
new_height, new_width = _compute_resized_output_size(canvas_size, size=size, max_size=max_size)
if (new_height, new_width) == (old_height, old_width):
return bounding_boxes, canvas_size
w_ratio = new_width / old_width
h_ratio = new_height / old_height
ratios = torch.tensor([w_ratio, h_ratio, w_ratio, h_ratio], device=bounding_boxes.device)
return (
bounding_boxes.mul(ratios).to(bounding_boxes.dtype),
(new_height, new_width),
)
@_register_kernel_internal(resize, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
def _resize_bounding_boxes_dispatch(
inpt: tv_tensors.BoundingBoxes, size: List[int], max_size: Optional[int] = None, **kwargs: Any
) -> tv_tensors.BoundingBoxes:
output, canvas_size = resize_bounding_boxes(
inpt.as_subclass(torch.Tensor), inpt.canvas_size, size, max_size=max_size
)
return tv_tensors.wrap(output, like=inpt, canvas_size=canvas_size)
@_register_kernel_internal(resize, tv_tensors.Video)
def resize_video(
video: torch.Tensor,
size: List[int],
interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
max_size: Optional[int] = None,
antialias: Optional[bool] = True,
) -> torch.Tensor:
return resize_image(video, size=size, interpolation=interpolation, max_size=max_size, antialias=antialias)
[docs]def affine(
inpt: torch.Tensor,
angle: Union[int, float],
translate: List[float],
scale: float,
shear: List[float],
interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
fill: _FillTypeJIT = None,
center: Optional[List[float]] = None,
) -> torch.Tensor:
"""See :class:`~torchvision.transforms.v2.RandomAffine` for details."""
if torch.jit.is_scripting():
return affine_image(
inpt,
angle=angle,
translate=translate,
scale=scale,
shear=shear,
interpolation=interpolation,
fill=fill,
center=center,
)
_log_api_usage_once(affine)
kernel = _get_kernel(affine, type(inpt))
return kernel(
inpt,
angle=angle,
translate=translate,
scale=scale,
shear=shear,
interpolation=interpolation,
fill=fill,
center=center,
)
def _affine_parse_args(
angle: Union[int, float],
translate: List[float],
scale: float,
shear: List[float],
interpolation: InterpolationMode = InterpolationMode.NEAREST,
center: Optional[List[float]] = None,
) -> Tuple[float, List[float], List[float], Optional[List[float]]]:
if not isinstance(angle, (int, float)):
raise TypeError("Argument angle should be int or float")
if not isinstance(translate, (list, tuple)):
raise TypeError("Argument translate should be a sequence")
if len(translate) != 2:
raise ValueError("Argument translate should be a sequence of length 2")
if scale <= 0.0:
raise ValueError("Argument scale should be positive")
if not isinstance(shear, (numbers.Number, (list, tuple))):
raise TypeError("Shear should be either a single value or a sequence of two values")
if not isinstance(interpolation, InterpolationMode):
raise TypeError("Argument interpolation should be a InterpolationMode")
if isinstance(angle, int):
angle = float(angle)
if isinstance(translate, tuple):
translate = list(translate)
if isinstance(shear, numbers.Number):
shear = [shear, 0.0]
if isinstance(shear, tuple):
shear = list(shear)
if len(shear) == 1:
shear = [shear[0], shear[0]]
if len(shear) != 2:
raise ValueError(f"Shear should be a sequence containing two values. Got {shear}")
if center is not None:
if not isinstance(center, (list, tuple)):
raise TypeError("Argument center should be a sequence")
else:
center = [float(c) for c in center]
return angle, translate, shear, center
def _get_inverse_affine_matrix(
center: List[float], angle: float, translate: List[float], scale: float, shear: List[float], inverted: bool = True
) -> List[float]:
# Helper method to compute inverse matrix for affine transformation
# Pillow requires inverse affine transformation matrix:
# Affine matrix is : M = T * C * RotateScaleShear * C^-1
#
# where T is translation matrix: [1, 0, tx | 0, 1, ty | 0, 0, 1]
# C is translation matrix to keep center: [1, 0, cx | 0, 1, cy | 0, 0, 1]
# RotateScaleShear is rotation with scale and shear matrix
#
# RotateScaleShear(a, s, (sx, sy)) =
# = R(a) * S(s) * SHy(sy) * SHx(sx)
# = [ s*cos(a - sy)/cos(sy), s*(-cos(a - sy)*tan(sx)/cos(sy) - sin(a)), 0 ]
# [ s*sin(a - sy)/cos(sy), s*(-sin(a - sy)*tan(sx)/cos(sy) + cos(a)), 0 ]
# [ 0 , 0 , 1 ]
# where R is a rotation matrix, S is a scaling matrix, and SHx and SHy are the shears:
# SHx(s) = [1, -tan(s)] and SHy(s) = [1 , 0]
# [0, 1 ] [-tan(s), 1]
#
# Thus, the inverse is M^-1 = C * RotateScaleShear^-1 * C^-1 * T^-1
rot = math.radians(angle)
sx = math.radians(shear[0])
sy = math.radians(shear[1])
cx, cy = center
tx, ty = translate
# Cached results
cos_sy = math.cos(sy)
tan_sx = math.tan(sx)
rot_minus_sy = rot - sy
cx_plus_tx = cx + tx
cy_plus_ty = cy + ty
# Rotate Scale Shear (RSS) without scaling
a = math.cos(rot_minus_sy) / cos_sy
b = -(a * tan_sx + math.sin(rot))
c = math.sin(rot_minus_sy) / cos_sy
d = math.cos(rot) - c * tan_sx
if inverted:
# Inverted rotation matrix with scale and shear
# det([[a, b], [c, d]]) == 1, since det(rotation) = 1 and det(shear) = 1
matrix = [d / scale, -b / scale, 0.0, -c / scale, a / scale, 0.0]
# Apply inverse of translation and of center translation: RSS^-1 * C^-1 * T^-1
# and then apply center translation: C * RSS^-1 * C^-1 * T^-1
matrix[2] += cx - matrix[0] * cx_plus_tx - matrix[1] * cy_plus_ty
matrix[5] += cy - matrix[3] * cx_plus_tx - matrix[4] * cy_plus_ty
else:
matrix = [a * scale, b * scale, 0.0, c * scale, d * scale, 0.0]
# Apply inverse of center translation: RSS * C^-1
# and then apply translation and center : T * C * RSS * C^-1
matrix[2] += cx_plus_tx - matrix[0] * cx - matrix[1] * cy
matrix[5] += cy_plus_ty - matrix[3] * cx - matrix[4] * cy
return matrix
def _compute_affine_output_size(matrix: List[float], w: int, h: int) -> Tuple[int, int]:
if torch._dynamo.is_compiling() and not torch.jit.is_scripting():
return _compute_affine_output_size_python(matrix, w, h)
else:
return _compute_affine_output_size_tensor(matrix, w, h)
def _compute_affine_output_size_tensor(matrix: List[float], w: int, h: int) -> Tuple[int, int]:
# Inspired of PIL implementation:
# https://github.com/python-pillow/Pillow/blob/11de3318867e4398057373ee9f12dcb33db7335c/src/PIL/Image.py#L2054
# pts are Top-Left, Top-Right, Bottom-Left, Bottom-Right points.
# Points are shifted due to affine matrix torch convention about
# the center point. Center is (0, 0) for image center pivot point (w * 0.5, h * 0.5)
half_w = 0.5 * w
half_h = 0.5 * h
pts = torch.tensor(
[
[-half_w, -half_h, 1.0],
[-half_w, half_h, 1.0],
[half_w, half_h, 1.0],
[half_w, -half_h, 1.0],
]
)
theta = torch.tensor(matrix, dtype=torch.float).view(2, 3)
new_pts = torch.matmul(pts, theta.T)
min_vals, max_vals = new_pts.aminmax(dim=0)
# shift points to [0, w] and [0, h] interval to match PIL results
halfs = torch.tensor((half_w, half_h))
min_vals.add_(halfs)
max_vals.add_(halfs)
# Truncate precision to 1e-4 to avoid ceil of Xe-15 to 1.0
tol = 1e-4
inv_tol = 1.0 / tol
cmax = max_vals.mul_(inv_tol).trunc_().mul_(tol).ceil_()
cmin = min_vals.mul_(inv_tol).trunc_().mul_(tol).floor_()
size = cmax.sub_(cmin)
return int(size[0]), int(size[1]) # w, h
def _compute_affine_output_size_python(matrix: List[float], w: int, h: int) -> Tuple[int, int]:
# Mostly copied from PIL implementation:
# The only difference is with transformed points as input matrix has zero translation part here and
# PIL has a centered translation part.
# https://github.com/python-pillow/Pillow/blob/11de3318867e4398057373ee9f12dcb33db7335c/src/PIL/Image.py#L2054
a, b, c, d, e, f = matrix
xx = []
yy = []
half_w = 0.5 * w
half_h = 0.5 * h
for x, y in ((-half_w, -half_h), (half_w, -half_h), (half_w, half_h), (-half_w, half_h)):
nx = a * x + b * y + c
ny = d * x + e * y + f
xx.append(nx + half_w)
yy.append(ny + half_h)
nw = math.ceil(max(xx)) - math.floor(min(xx))
nh = math.ceil(max(yy)) - math.floor(min(yy))
return int(nw), int(nh) # w, h
def _apply_grid_transform(img: torch.Tensor, grid: torch.Tensor, mode: str, fill: _FillTypeJIT) -> torch.Tensor:
input_shape = img.shape
output_height, output_width = grid.shape[1], grid.shape[2]
num_channels, input_height, input_width = input_shape[-3:]
output_shape = input_shape[:-3] + (num_channels, output_height, output_width)
if img.numel() == 0:
return img.reshape(output_shape)
img = img.reshape(-1, num_channels, input_height, input_width)
squashed_batch_size = img.shape[0]
# We are using context knowledge that grid should have float dtype
fp = img.dtype == grid.dtype
float_img = img if fp else img.to(grid.dtype)
if squashed_batch_size > 1:
# Apply same grid to a batch of images
grid = grid.expand(squashed_batch_size, -1, -1, -1)
# Append a dummy mask for customized fill colors, should be faster than grid_sample() twice
if fill is not None:
mask = torch.ones(
(squashed_batch_size, 1, input_height, input_width), dtype=float_img.dtype, device=float_img.device
)
float_img = torch.cat((float_img, mask), dim=1)
float_img = grid_sample(float_img, grid, mode=mode, padding_mode="zeros", align_corners=False)
# Fill with required color
if fill is not None:
float_img, mask = torch.tensor_split(float_img, indices=(-1,), dim=-3)
mask = mask.expand_as(float_img)
fill_list = fill if isinstance(fill, (tuple, list)) else [float(fill)] # type: ignore[arg-type]
fill_img = torch.tensor(fill_list, dtype=float_img.dtype, device=float_img.device).view(1, -1, 1, 1)
if mode == "nearest":
float_img = torch.where(mask < 0.5, fill_img.expand_as(float_img), float_img)
else: # 'bilinear'
# The following is mathematically equivalent to:
# img * mask + (1.0 - mask) * fill = img * mask - fill * mask + fill = mask * (img - fill) + fill
float_img = float_img.sub_(fill_img).mul_(mask).add_(fill_img)
img = float_img.round_().to(img.dtype) if not fp else float_img
return img.reshape(output_shape)
def _assert_grid_transform_inputs(
image: torch.Tensor,
matrix: Optional[List[float]],
interpolation: str,
fill: _FillTypeJIT,
supported_interpolation_modes: List[str],
coeffs: Optional[List[float]] = None,
) -> None:
if matrix is not None:
if not isinstance(matrix, list):
raise TypeError("Argument matrix should be a list")
elif len(matrix) != 6:
raise ValueError("Argument matrix should have 6 float values")
if coeffs is not None and len(coeffs) != 8:
raise ValueError("Argument coeffs should have 8 float values")
if fill is not None:
if isinstance(fill, (tuple, list)):
length = len(fill)
num_channels = image.shape[-3]
if length > 1 and length != num_channels:
raise ValueError(
"The number of elements in 'fill' cannot broadcast to match the number of "
f"channels of the image ({length} != {num_channels})"
)
elif not isinstance(fill, (int, float)):
raise ValueError("Argument fill should be either int, float, tuple or list")
if interpolation not in supported_interpolation_modes:
raise ValueError(f"Interpolation mode '{interpolation}' is unsupported with Tensor input")
def _affine_grid(
theta: torch.Tensor,
w: int,
h: int,
ow: int,
oh: int,
) -> torch.Tensor:
# https://github.com/pytorch/pytorch/blob/74b65c32be68b15dc7c9e8bb62459efbfbde33d8/aten/src/ATen/native/
# AffineGridGenerator.cpp#L18
# Difference with AffineGridGenerator is that:
# 1) we normalize grid values after applying theta
# 2) we can normalize by other image size, such that it covers "extend" option like in PIL.Image.rotate
dtype = theta.dtype
device = theta.device
base_grid = torch.empty(1, oh, ow, 3, dtype=dtype, device=device)
x_grid = torch.linspace((1.0 - ow) * 0.5, (ow - 1.0) * 0.5, steps=ow, device=device)
base_grid[..., 0].copy_(x_grid)
y_grid = torch.linspace((1.0 - oh) * 0.5, (oh - 1.0) * 0.5, steps=oh, device=device).unsqueeze_(-1)
base_grid[..., 1].copy_(y_grid)
base_grid[..., 2].fill_(1)
rescaled_theta = theta.transpose(1, 2).div_(torch.tensor([0.5 * w, 0.5 * h], dtype=dtype, device=device))
output_grid = base_grid.view(1, oh * ow, 3).bmm(rescaled_theta)
return output_grid.view(1, oh, ow, 2)
@_register_kernel_internal(affine, torch.Tensor)
@_register_kernel_internal(affine, tv_tensors.Image)
def affine_image(
image: torch.Tensor,
angle: Union[int, float],
translate: List[float],
scale: float,
shear: List[float],
interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
fill: _FillTypeJIT = None,
center: Optional[List[float]] = None,
) -> torch.Tensor:
interpolation = _check_interpolation(interpolation)
angle, translate, shear, center = _affine_parse_args(angle, translate, scale, shear, interpolation, center)
height, width = image.shape[-2:]
center_f = [0.0, 0.0]
if center is not None:
# Center values should be in pixel coordinates but translated such that (0, 0) corresponds to image center.
center_f = [(c - s * 0.5) for c, s in zip(center, [width, height])]
translate_f = [float(t) for t in translate]
matrix = _get_inverse_affine_matrix(center_f, angle, translate_f, scale, shear)
_assert_grid_transform_inputs(image, matrix, interpolation.value, fill, ["nearest", "bilinear"])
dtype = image.dtype if torch.is_floating_point(image) else torch.float32
theta = torch.tensor(matrix, dtype=dtype, device=image.device).reshape(1, 2, 3)
grid = _affine_grid(theta, w=width, h=height, ow=width, oh=height)
return _apply_grid_transform(image, grid, interpolation.value, fill=fill)
@_register_kernel_internal(affine, PIL.Image.Image)
def _affine_image_pil(
image: PIL.Image.Image,
angle: Union[int, float],
translate: List[float],
scale: float,
shear: List[float],
interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
fill: _FillTypeJIT = None,
center: Optional[List[float]] = None,
) -> PIL.Image.Image:
interpolation = _check_interpolation(interpolation)
angle, translate, shear, center = _affine_parse_args(angle, translate, scale, shear, interpolation, center)
# center = (img_size[0] * 0.5 + 0.5, img_size[1] * 0.5 + 0.5)
# it is visually better to estimate the center without 0.5 offset
# otherwise image rotated by 90 degrees is shifted vs output image of torch.rot90 or F_t.affine
if center is None:
height, width = _get_size_image_pil(image)
center = [width * 0.5, height * 0.5]
matrix = _get_inverse_affine_matrix(center, angle, translate, scale, shear)
return _FP.affine(image, matrix, interpolation=pil_modes_mapping[interpolation], fill=fill)
def _affine_bounding_boxes_with_expand(
bounding_boxes: torch.Tensor,
format: tv_tensors.BoundingBoxFormat,
canvas_size: Tuple[int, int],
angle: Union[int, float],
translate: List[float],
scale: float,
shear: List[float],
center: Optional[List[float]] = None,
expand: bool = False,
) -> Tuple[torch.Tensor, Tuple[int, int]]:
if bounding_boxes.numel() == 0:
return bounding_boxes, canvas_size
original_shape = bounding_boxes.shape
original_dtype = bounding_boxes.dtype
bounding_boxes = bounding_boxes.clone() if bounding_boxes.is_floating_point() else bounding_boxes.float()
dtype = bounding_boxes.dtype
device = bounding_boxes.device
bounding_boxes = (
convert_bounding_box_format(
bounding_boxes, old_format=format, new_format=tv_tensors.BoundingBoxFormat.XYXY, inplace=True
)
).reshape(-1, 4)
angle, translate, shear, center = _affine_parse_args(
angle, translate, scale, shear, InterpolationMode.NEAREST, center
)
if center is None:
height, width = canvas_size
center = [width * 0.5, height * 0.5]
affine_vector = _get_inverse_affine_matrix(center, angle, translate, scale, shear, inverted=False)
transposed_affine_matrix = (
torch.tensor(
affine_vector,
dtype=dtype,
device=device,
)
.reshape(2, 3)
.T
)
# 1) Let's transform bboxes into a tensor of 4 points (top-left, top-right, bottom-left, bottom-right corners).
# Tensor of points has shape (N * 4, 3), where N is the number of bboxes
# Single point structure is similar to
# [(xmin, ymin, 1), (xmax, ymin, 1), (xmax, ymax, 1), (xmin, ymax, 1)]
points = bounding_boxes[:, [[0, 1], [2, 1], [2, 3], [0, 3]]].reshape(-1, 2)
points = torch.cat([points, torch.ones(points.shape[0], 1, device=device, dtype=dtype)], dim=-1)
# 2) Now let's transform the points using affine matrix
transformed_points = torch.matmul(points, transposed_affine_matrix)
# 3) Reshape transformed points to [N boxes, 4 points, x/y coords]
# and compute bounding box from 4 transformed points:
transformed_points = transformed_points.reshape(-1, 4, 2)
out_bbox_mins, out_bbox_maxs = torch.aminmax(transformed_points, dim=1)
out_bboxes = torch.cat([out_bbox_mins, out_bbox_maxs], dim=1)
if expand:
# Compute minimum point for transformed image frame:
# Points are Top-Left, Top-Right, Bottom-Left, Bottom-Right points.
height, width = canvas_size
points = torch.tensor(
[
[0.0, 0.0, 1.0],
[0.0, float(height), 1.0],
[float(width), float(height), 1.0],
[float(width), 0.0, 1.0],
],
dtype=dtype,
device=device,
)
new_points = torch.matmul(points, transposed_affine_matrix)
tr = torch.amin(new_points, dim=0, keepdim=True)
# Translate bounding boxes
out_bboxes.sub_(tr.repeat((1, 2)))
# Estimate meta-data for image with inverted=True
affine_vector = _get_inverse_affine_matrix(center, angle, translate, scale, shear)
new_width, new_height = _compute_affine_output_size(affine_vector, width, height)
canvas_size = (new_height, new_width)
out_bboxes = clamp_bounding_boxes(out_bboxes, format=tv_tensors.BoundingBoxFormat.XYXY, canvas_size=canvas_size)
out_bboxes = convert_bounding_box_format(
out_bboxes, old_format=tv_tensors.BoundingBoxFormat.XYXY, new_format=format, inplace=True
).reshape(original_shape)
out_bboxes = out_bboxes.to(original_dtype)
return out_bboxes, canvas_size
def affine_bounding_boxes(
bounding_boxes: torch.Tensor,
format: tv_tensors.BoundingBoxFormat,
canvas_size: Tuple[int, int],
angle: Union[int, float],
translate: List[float],
scale: float,
shear: List[float],
center: Optional[List[float]] = None,
) -> torch.Tensor:
out_box, _ = _affine_bounding_boxes_with_expand(
bounding_boxes,
format=format,
canvas_size=canvas_size,
angle=angle,
translate=translate,
scale=scale,
shear=shear,
center=center,
expand=False,
)
return out_box
@_register_kernel_internal(affine, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
def _affine_bounding_boxes_dispatch(
inpt: tv_tensors.BoundingBoxes,
angle: Union[int, float],
translate: List[float],
scale: float,
shear: List[float],
center: Optional[List[float]] = None,
**kwargs,
) -> tv_tensors.BoundingBoxes:
output = affine_bounding_boxes(
inpt.as_subclass(torch.Tensor),
format=inpt.format,
canvas_size=inpt.canvas_size,
angle=angle,
translate=translate,
scale=scale,
shear=shear,
center=center,
)
return tv_tensors.wrap(output, like=inpt)
def affine_mask(
mask: torch.Tensor,
angle: Union[int, float],
translate: List[float],
scale: float,
shear: List[float],
fill: _FillTypeJIT = None,
center: Optional[List[float]] = None,
) -> torch.Tensor:
if mask.ndim < 3:
mask = mask.unsqueeze(0)
needs_squeeze = True
else:
needs_squeeze = False
output = affine_image(
mask,
angle=angle,
translate=translate,
scale=scale,
shear=shear,
interpolation=InterpolationMode.NEAREST,
fill=fill,
center=center,
)
if needs_squeeze:
output = output.squeeze(0)
return output
@_register_kernel_internal(affine, tv_tensors.Mask, tv_tensor_wrapper=False)
def _affine_mask_dispatch(
inpt: tv_tensors.Mask,
angle: Union[int, float],
translate: List[float],
scale: float,
shear: List[float],
fill: _FillTypeJIT = None,
center: Optional[List[float]] = None,
**kwargs,
) -> tv_tensors.Mask:
output = affine_mask(
inpt.as_subclass(torch.Tensor),
angle=angle,
translate=translate,
scale=scale,
shear=shear,
fill=fill,
center=center,
)
return tv_tensors.wrap(output, like=inpt)
@_register_kernel_internal(affine, tv_tensors.Video)
def affine_video(
video: torch.Tensor,
angle: Union[int, float],
translate: List[float],
scale: float,
shear: List[float],
interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
fill: _FillTypeJIT = None,
center: Optional[List[float]] = None,
) -> torch.Tensor:
return affine_image(
video,
angle=angle,
translate=translate,
scale=scale,
shear=shear,
interpolation=interpolation,
fill=fill,
center=center,
)
[docs]def rotate(
inpt: torch.Tensor,
angle: float,
interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
expand: bool = False,
center: Optional[List[float]] = None,
fill: _FillTypeJIT = None,
) -> torch.Tensor:
"""See :class:`~torchvision.transforms.v2.RandomRotation` for details."""
if torch.jit.is_scripting():
return rotate_image(inpt, angle=angle, interpolation=interpolation, expand=expand, fill=fill, center=center)
_log_api_usage_once(rotate)
kernel = _get_kernel(rotate, type(inpt))
return kernel(inpt, angle=angle, interpolation=interpolation, expand=expand, fill=fill, center=center)
@_register_kernel_internal(rotate, torch.Tensor)
@_register_kernel_internal(rotate, tv_tensors.Image)
def rotate_image(
image: torch.Tensor,
angle: float,
interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
expand: bool = False,
center: Optional[List[float]] = None,
fill: _FillTypeJIT = None,
) -> torch.Tensor:
angle = angle % 360 # shift angle to [0, 360) range
# fast path: transpose without affine transform
if center is None:
if angle == 0:
return image.clone()
if angle == 180:
return torch.rot90(image, k=2, dims=(-2, -1))
if expand or image.shape[-1] == image.shape[-2]:
if angle == 90:
return torch.rot90(image, k=1, dims=(-2, -1))
if angle == 270:
return torch.rot90(image, k=3, dims=(-2, -1))
interpolation = _check_interpolation(interpolation)
input_height, input_width = image.shape[-2:]
center_f = [0.0, 0.0]
if center is not None:
# Center values should be in pixel coordinates but translated such that (0, 0) corresponds to image center.
center_f = [(c - s * 0.5) for c, s in zip(center, [input_width, input_height])]
# due to current incoherence of rotation angle direction between affine and rotate implementations
# we need to set -angle.
matrix = _get_inverse_affine_matrix(center_f, -angle, [0.0, 0.0], 1.0, [0.0, 0.0])
_assert_grid_transform_inputs(image, matrix, interpolation.value, fill, ["nearest", "bilinear"])
output_width, output_height = (
_compute_affine_output_size(matrix, input_width, input_height) if expand else (input_width, input_height)
)
dtype = image.dtype if torch.is_floating_point(image) else torch.float32
theta = torch.tensor(matrix, dtype=dtype, device=image.device).reshape(1, 2, 3)
grid = _affine_grid(theta, w=input_width, h=input_height, ow=output_width, oh=output_height)
return _apply_grid_transform(image, grid, interpolation.value, fill=fill)
@_register_kernel_internal(rotate, PIL.Image.Image)
def _rotate_image_pil(
image: PIL.Image.Image,
angle: float,
interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
expand: bool = False,
center: Optional[List[float]] = None,
fill: _FillTypeJIT = None,
) -> PIL.Image.Image:
interpolation = _check_interpolation(interpolation)
return _FP.rotate(
image, angle, interpolation=pil_modes_mapping[interpolation], expand=expand, fill=fill, center=center
)
def rotate_bounding_boxes(
bounding_boxes: torch.Tensor,
format: tv_tensors.BoundingBoxFormat,
canvas_size: Tuple[int, int],
angle: float,
expand: bool = False,
center: Optional[List[float]] = None,
) -> Tuple[torch.Tensor, Tuple[int, int]]:
return _affine_bounding_boxes_with_expand(
bounding_boxes,
format=format,
canvas_size=canvas_size,
angle=-angle,
translate=[0.0, 0.0],
scale=1.0,
shear=[0.0, 0.0],
center=center,
expand=expand,
)
@_register_kernel_internal(rotate, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
def _rotate_bounding_boxes_dispatch(
inpt: tv_tensors.BoundingBoxes, angle: float, expand: bool = False, center: Optional[List[float]] = None, **kwargs
) -> tv_tensors.BoundingBoxes:
output, canvas_size = rotate_bounding_boxes(
inpt.as_subclass(torch.Tensor),
format=inpt.format,
canvas_size=inpt.canvas_size,
angle=angle,
expand=expand,
center=center,
)
return tv_tensors.wrap(output, like=inpt, canvas_size=canvas_size)
def rotate_mask(
mask: torch.Tensor,
angle: float,
expand: bool = False,
center: Optional[List[float]] = None,
fill: _FillTypeJIT = None,
) -> torch.Tensor:
if mask.ndim < 3:
mask = mask.unsqueeze(0)
needs_squeeze = True
else:
needs_squeeze = False
output = rotate_image(
mask,
angle=angle,
expand=expand,
interpolation=InterpolationMode.NEAREST,
fill=fill,
center=center,
)
if needs_squeeze:
output = output.squeeze(0)
return output
@_register_kernel_internal(rotate, tv_tensors.Mask, tv_tensor_wrapper=False)
def _rotate_mask_dispatch(
inpt: tv_tensors.Mask,
angle: float,
expand: bool = False,
center: Optional[List[float]] = None,
fill: _FillTypeJIT = None,
**kwargs,
) -> tv_tensors.Mask:
output = rotate_mask(inpt.as_subclass(torch.Tensor), angle=angle, expand=expand, fill=fill, center=center)
return tv_tensors.wrap(output, like=inpt)
@_register_kernel_internal(rotate, tv_tensors.Video)
def rotate_video(
video: torch.Tensor,
angle: float,
interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
expand: bool = False,
center: Optional[List[float]] = None,
fill: _FillTypeJIT = None,
) -> torch.Tensor:
return rotate_image(video, angle, interpolation=interpolation, expand=expand, fill=fill, center=center)
[docs]def pad(
inpt: torch.Tensor,
padding: List[int],
fill: Optional[Union[int, float, List[float]]] = None,
padding_mode: str = "constant",
) -> torch.Tensor:
"""See :class:`~torchvision.transforms.v2.Pad` for details."""
if torch.jit.is_scripting():
return pad_image(inpt, padding=padding, fill=fill, padding_mode=padding_mode)
_log_api_usage_once(pad)
kernel = _get_kernel(pad, type(inpt))
return kernel(inpt, padding=padding, fill=fill, padding_mode=padding_mode)
def _parse_pad_padding(padding: Union[int, List[int]]) -> List[int]:
if isinstance(padding, int):
pad_left = pad_right = pad_top = pad_bottom = padding
elif isinstance(padding, (tuple, list)):
if len(padding) == 1:
pad_left = pad_right = pad_top = pad_bottom = padding[0]
elif len(padding) == 2:
pad_left = pad_right = padding[0]
pad_top = pad_bottom = padding[1]
elif len(padding) == 4:
pad_left = padding[0]
pad_top = padding[1]
pad_right = padding[2]
pad_bottom = padding[3]
else:
raise ValueError(
f"Padding must be an int or a 1, 2, or 4 element tuple, not a {len(padding)} element tuple"
)
else:
raise TypeError(f"`padding` should be an integer or tuple or list of integers, but got {padding}")
return [pad_left, pad_right, pad_top, pad_bottom]
@_register_kernel_internal(pad, torch.Tensor)
@_register_kernel_internal(pad, tv_tensors.Image)
def pad_image(
image: torch.Tensor,
padding: List[int],
fill: Optional[Union[int, float, List[float]]] = None,
padding_mode: str = "constant",
) -> torch.Tensor:
# Be aware that while `padding` has order `[left, top, right, bottom]`, `torch_padding` uses
# `[left, right, top, bottom]`. This stems from the fact that we align our API with PIL, but need to use `torch_pad`
# internally.
torch_padding = _parse_pad_padding(padding)
if padding_mode not in ("constant", "edge", "reflect", "symmetric"):
raise ValueError(
f"`padding_mode` should be either `'constant'`, `'edge'`, `'reflect'` or `'symmetric'`, "
f"but got `'{padding_mode}'`."
)
if fill is None:
fill = 0
if isinstance(fill, (int, float)):
return _pad_with_scalar_fill(image, torch_padding, fill=fill, padding_mode=padding_mode)
elif len(fill) == 1:
return _pad_with_scalar_fill(image, torch_padding, fill=fill[0], padding_mode=padding_mode)
else:
return _pad_with_vector_fill(image, torch_padding, fill=fill, padding_mode=padding_mode)
def _pad_with_scalar_fill(
image: torch.Tensor,
torch_padding: List[int],
fill: Union[int, float],
padding_mode: str,
) -> torch.Tensor:
shape = image.shape
num_channels, height, width = shape[-3:]
batch_size = 1
for s in shape[:-3]:
batch_size *= s
image = image.reshape(batch_size, num_channels, height, width)
if padding_mode == "edge":
# Similar to the padding order, `torch_pad`'s PIL's padding modes don't have the same names. Thus, we map
# the PIL name for the padding mode, which we are also using for our API, to the corresponding `torch_pad`
# name.
padding_mode = "replicate"
if padding_mode == "constant":
image = torch_pad(image, torch_padding, mode=padding_mode, value=float(fill))
elif padding_mode in ("reflect", "replicate"):
# `torch_pad` only supports `"reflect"` or `"replicate"` padding for floating point inputs.
# TODO: See https://github.com/pytorch/pytorch/issues/40763
dtype = image.dtype
if not image.is_floating_point():
needs_cast = True
image = image.to(torch.float32)
else:
needs_cast = False
image = torch_pad(image, torch_padding, mode=padding_mode)
if needs_cast:
image = image.to(dtype)
else: # padding_mode == "symmetric"
image = _pad_symmetric(image, torch_padding)
new_height, new_width = image.shape[-2:]
return image.reshape(shape[:-3] + (num_channels, new_height, new_width))
# TODO: This should be removed once torch_pad supports non-scalar padding values
def _pad_with_vector_fill(
image: torch.Tensor,
torch_padding: List[int],
fill: List[float],
padding_mode: str,
) -> torch.Tensor:
if padding_mode != "constant":
raise ValueError(f"Padding mode '{padding_mode}' is not supported if fill is not scalar")
output = _pad_with_scalar_fill(image, torch_padding, fill=0, padding_mode="constant")
left, right, top, bottom = torch_padding
# We are creating the tensor in the autodetected dtype first and convert to the right one after to avoid an implicit
# float -> int conversion. That happens for example for the valid input of a uint8 image with floating point fill
# value.
fill = torch.tensor(fill, device=image.device).to(dtype=image.dtype).reshape(-1, 1, 1)
if top > 0:
output[..., :top, :] = fill
if left > 0:
output[..., :, :left] = fill
if bottom > 0:
output[..., -bottom:, :] = fill
if right > 0:
output[..., :, -right:] = fill
return output
_pad_image_pil = _register_kernel_internal(pad, PIL.Image.Image)(_FP.pad)
@_register_kernel_internal(pad, tv_tensors.Mask)
def pad_mask(
mask: torch.Tensor,
padding: List[int],
fill: Optional[Union[int, float, List[float]]] = None,
padding_mode: str = "constant",
) -> torch.Tensor:
if fill is None:
fill = 0
if isinstance(fill, (tuple, list)):
raise ValueError("Non-scalar fill value is not supported")
if mask.ndim < 3:
mask = mask.unsqueeze(0)
needs_squeeze = True
else:
needs_squeeze = False
output = pad_image(mask, padding=padding, fill=fill, padding_mode=padding_mode)
if needs_squeeze:
output = output.squeeze(0)
return output
def pad_bounding_boxes(
bounding_boxes: torch.Tensor,
format: tv_tensors.BoundingBoxFormat,
canvas_size: Tuple[int, int],
padding: List[int],
padding_mode: str = "constant",
) -> Tuple[torch.Tensor, Tuple[int, int]]:
if padding_mode not in ["constant"]:
# TODO: add support of other padding modes
raise ValueError(f"Padding mode '{padding_mode}' is not supported with bounding boxes")
left, right, top, bottom = _parse_pad_padding(padding)
if format == tv_tensors.BoundingBoxFormat.XYXY:
pad = [left, top, left, top]
else:
pad = [left, top, 0, 0]
bounding_boxes = bounding_boxes + torch.tensor(pad, dtype=bounding_boxes.dtype, device=bounding_boxes.device)
height, width = canvas_size
height += top + bottom
width += left + right
canvas_size = (height, width)
return clamp_bounding_boxes(bounding_boxes, format=format, canvas_size=canvas_size), canvas_size
@_register_kernel_internal(pad, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
def _pad_bounding_boxes_dispatch(
inpt: tv_tensors.BoundingBoxes, padding: List[int], padding_mode: str = "constant", **kwargs
) -> tv_tensors.BoundingBoxes:
output, canvas_size = pad_bounding_boxes(
inpt.as_subclass(torch.Tensor),
format=inpt.format,
canvas_size=inpt.canvas_size,
padding=padding,
padding_mode=padding_mode,
)
return tv_tensors.wrap(output, like=inpt, canvas_size=canvas_size)
@_register_kernel_internal(pad, tv_tensors.Video)
def pad_video(
video: torch.Tensor,
padding: List[int],
fill: Optional[Union[int, float, List[float]]] = None,
padding_mode: str = "constant",
) -> torch.Tensor:
return pad_image(video, padding, fill=fill, padding_mode=padding_mode)
[docs]def crop(inpt: torch.Tensor, top: int, left: int, height: int, width: int) -> torch.Tensor:
"""See :class:`~torchvision.transforms.v2.RandomCrop` for details."""
if torch.jit.is_scripting():
return crop_image(inpt, top=top, left=left, height=height, width=width)
_log_api_usage_once(crop)
kernel = _get_kernel(crop, type(inpt))
return kernel(inpt, top=top, left=left, height=height, width=width)
@_register_kernel_internal(crop, torch.Tensor)
@_register_kernel_internal(crop, tv_tensors.Image)
def crop_image(image: torch.Tensor, top: int, left: int, height: int, width: int) -> torch.Tensor:
h, w = image.shape[-2:]
right = left + width
bottom = top + height
if left < 0 or top < 0 or right > w or bottom > h:
image = image[..., max(top, 0) : bottom, max(left, 0) : right]
torch_padding = [
max(min(right, 0) - left, 0),
max(right - max(w, left), 0),
max(min(bottom, 0) - top, 0),
max(bottom - max(h, top), 0),
]
return _pad_with_scalar_fill(image, torch_padding, fill=0, padding_mode="constant")
return image[..., top:bottom, left:right]
_crop_image_pil = _FP.crop
_register_kernel_internal(crop, PIL.Image.Image)(_crop_image_pil)
def crop_bounding_boxes(
bounding_boxes: torch.Tensor,
format: tv_tensors.BoundingBoxFormat,
top: int,
left: int,
height: int,
width: int,
) -> Tuple[torch.Tensor, Tuple[int, int]]:
# Crop or implicit pad if left and/or top have negative values:
if format == tv_tensors.BoundingBoxFormat.XYXY:
sub = [left, top, left, top]
else:
sub = [left, top, 0, 0]
bounding_boxes = bounding_boxes - torch.tensor(sub, dtype=bounding_boxes.dtype, device=bounding_boxes.device)
canvas_size = (height, width)
return clamp_bounding_boxes(bounding_boxes, format=format, canvas_size=canvas_size), canvas_size
@_register_kernel_internal(crop, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
def _crop_bounding_boxes_dispatch(
inpt: tv_tensors.BoundingBoxes, top: int, left: int, height: int, width: int
) -> tv_tensors.BoundingBoxes:
output, canvas_size = crop_bounding_boxes(
inpt.as_subclass(torch.Tensor), format=inpt.format, top=top, left=left, height=height, width=width
)
return tv_tensors.wrap(output, like=inpt, canvas_size=canvas_size)
@_register_kernel_internal(crop, tv_tensors.Mask)
def crop_mask(mask: torch.Tensor, top: int, left: int, height: int, width: int) -> torch.Tensor:
if mask.ndim < 3:
mask = mask.unsqueeze(0)
needs_squeeze = True
else:
needs_squeeze = False
output = crop_image(mask, top, left, height, width)
if needs_squeeze:
output = output.squeeze(0)
return output
@_register_kernel_internal(crop, tv_tensors.Video)
def crop_video(video: torch.Tensor, top: int, left: int, height: int, width: int) -> torch.Tensor:
return crop_image(video, top, left, height, width)
[docs]def perspective(
inpt: torch.Tensor,
startpoints: Optional[List[List[int]]],
endpoints: Optional[List[List[int]]],
interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
fill: _FillTypeJIT = None,
coefficients: Optional[List[float]] = None,
) -> torch.Tensor:
"""See :class:`~torchvision.transforms.v2.RandomPerspective` for details."""
if torch.jit.is_scripting():
return perspective_image(
inpt,
startpoints=startpoints,
endpoints=endpoints,
interpolation=interpolation,
fill=fill,
coefficients=coefficients,
)
_log_api_usage_once(perspective)
kernel = _get_kernel(perspective, type(inpt))
return kernel(
inpt,
startpoints=startpoints,
endpoints=endpoints,
interpolation=interpolation,
fill=fill,
coefficients=coefficients,
)
def _perspective_grid(coeffs: List[float], ow: int, oh: int, dtype: torch.dtype, device: torch.device) -> torch.Tensor:
# https://github.com/python-pillow/Pillow/blob/4634eafe3c695a014267eefdce830b4a825beed7/
# src/libImaging/Geometry.c#L394
#
# x_out = (coeffs[0] * x + coeffs[1] * y + coeffs[2]) / (coeffs[6] * x + coeffs[7] * y + 1)
# y_out = (coeffs[3] * x + coeffs[4] * y + coeffs[5]) / (coeffs[6] * x + coeffs[7] * y + 1)
#
theta1 = torch.tensor(
[[[coeffs[0], coeffs[1], coeffs[2]], [coeffs[3], coeffs[4], coeffs[5]]]], dtype=dtype, device=device
)
theta2 = torch.tensor([[[coeffs[6], coeffs[7], 1.0], [coeffs[6], coeffs[7], 1.0]]], dtype=dtype, device=device)
d = 0.5
base_grid = torch.empty(1, oh, ow, 3, dtype=dtype, device=device)
x_grid = torch.linspace(d, ow + d - 1.0, steps=ow, device=device, dtype=dtype)
base_grid[..., 0].copy_(x_grid)
y_grid = torch.linspace(d, oh + d - 1.0, steps=oh, device=device, dtype=dtype).unsqueeze_(-1)
base_grid[..., 1].copy_(y_grid)
base_grid[..., 2].fill_(1)
rescaled_theta1 = theta1.transpose(1, 2).div_(torch.tensor([0.5 * ow, 0.5 * oh], dtype=dtype, device=device))
shape = (1, oh * ow, 3)
output_grid1 = base_grid.view(shape).bmm(rescaled_theta1)
output_grid2 = base_grid.view(shape).bmm(theta2.transpose(1, 2))
output_grid = output_grid1.div_(output_grid2).sub_(1.0)
return output_grid.view(1, oh, ow, 2)
def _perspective_coefficients(
startpoints: Optional[List[List[int]]],
endpoints: Optional[List[List[int]]],
coefficients: Optional[List[float]],
) -> List[float]:
if coefficients is not None:
if startpoints is not None and endpoints is not None:
raise ValueError("The startpoints/endpoints and the coefficients shouldn't be defined concurrently.")
elif len(coefficients) != 8:
raise ValueError("Argument coefficients should have 8 float values")
return coefficients
elif startpoints is not None and endpoints is not None:
return _get_perspective_coeffs(startpoints, endpoints)
else:
raise ValueError("Either the startpoints/endpoints or the coefficients must have non `None` values.")
@_register_kernel_internal(perspective, torch.Tensor)
@_register_kernel_internal(perspective, tv_tensors.Image)
def perspective_image(
image: torch.Tensor,
startpoints: Optional[List[List[int]]],
endpoints: Optional[List[List[int]]],
interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
fill: _FillTypeJIT = None,
coefficients: Optional[List[float]] = None,
) -> torch.Tensor:
perspective_coeffs = _perspective_coefficients(startpoints, endpoints, coefficients)
interpolation = _check_interpolation(interpolation)
_assert_grid_transform_inputs(
image,
matrix=None,
interpolation=interpolation.value,
fill=fill,
supported_interpolation_modes=["nearest", "bilinear"],
coeffs=perspective_coeffs,
)
oh, ow = image.shape[-2:]
dtype = image.dtype if torch.is_floating_point(image) else torch.float32
grid = _perspective_grid(perspective_coeffs, ow=ow, oh=oh, dtype=dtype, device=image.device)
return _apply_grid_transform(image, grid, interpolation.value, fill=fill)
@_register_kernel_internal(perspective, PIL.Image.Image)
def _perspective_image_pil(
image: PIL.Image.Image,
startpoints: Optional[List[List[int]]],
endpoints: Optional[List[List[int]]],
interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
fill: _FillTypeJIT = None,
coefficients: Optional[List[float]] = None,
) -> PIL.Image.Image:
perspective_coeffs = _perspective_coefficients(startpoints, endpoints, coefficients)
interpolation = _check_interpolation(interpolation)
return _FP.perspective(image, perspective_coeffs, interpolation=pil_modes_mapping[interpolation], fill=fill)
def perspective_bounding_boxes(
bounding_boxes: torch.Tensor,
format: tv_tensors.BoundingBoxFormat,
canvas_size: Tuple[int, int],
startpoints: Optional[List[List[int]]],
endpoints: Optional[List[List[int]]],
coefficients: Optional[List[float]] = None,
) -> torch.Tensor:
if bounding_boxes.numel() == 0:
return bounding_boxes
perspective_coeffs = _perspective_coefficients(startpoints, endpoints, coefficients)
original_shape = bounding_boxes.shape
# TODO: first cast to float if bbox is int64 before convert_bounding_box_format
bounding_boxes = (
convert_bounding_box_format(bounding_boxes, old_format=format, new_format=tv_tensors.BoundingBoxFormat.XYXY)
).reshape(-1, 4)
dtype = bounding_boxes.dtype if torch.is_floating_point(bounding_boxes) else torch.float32
device = bounding_boxes.device
# perspective_coeffs are computed as endpoint -> start point
# We have to invert perspective_coeffs for bboxes:
# (x, y) - end point and (x_out, y_out) - start point
# x_out = (coeffs[0] * x + coeffs[1] * y + coeffs[2]) / (coeffs[6] * x + coeffs[7] * y + 1)
# y_out = (coeffs[3] * x + coeffs[4] * y + coeffs[5]) / (coeffs[6] * x + coeffs[7] * y + 1)
# and we would like to get:
# x = (inv_coeffs[0] * x_out + inv_coeffs[1] * y_out + inv_coeffs[2])
# / (inv_coeffs[6] * x_out + inv_coeffs[7] * y_out + 1)
# y = (inv_coeffs[3] * x_out + inv_coeffs[4] * y_out + inv_coeffs[5])
# / (inv_coeffs[6] * x_out + inv_coeffs[7] * y_out + 1)
# and compute inv_coeffs in terms of coeffs
denom = perspective_coeffs[0] * perspective_coeffs[4] - perspective_coeffs[1] * perspective_coeffs[3]
if denom == 0:
raise RuntimeError(
f"Provided perspective_coeffs {perspective_coeffs} can not be inverted to transform bounding boxes. "
f"Denominator is zero, denom={denom}"
)
inv_coeffs = [
(perspective_coeffs[4] - perspective_coeffs[5] * perspective_coeffs[7]) / denom,
(-perspective_coeffs[1] + perspective_coeffs[2] * perspective_coeffs[7]) / denom,
(perspective_coeffs[1] * perspective_coeffs[5] - perspective_coeffs[2] * perspective_coeffs[4]) / denom,
(-perspective_coeffs[3] + perspective_coeffs[5] * perspective_coeffs[6]) / denom,
(perspective_coeffs[0] - perspective_coeffs[2] * perspective_coeffs[6]) / denom,
(-perspective_coeffs[0] * perspective_coeffs[5] + perspective_coeffs[2] * perspective_coeffs[3]) / denom,
(-perspective_coeffs[4] * perspective_coeffs[6] + perspective_coeffs[3] * perspective_coeffs[7]) / denom,
(-perspective_coeffs[0] * perspective_coeffs[7] + perspective_coeffs[1] * perspective_coeffs[6]) / denom,
]
theta1 = torch.tensor(
[[inv_coeffs[0], inv_coeffs[1], inv_coeffs[2]], [inv_coeffs[3], inv_coeffs[4], inv_coeffs[5]]],
dtype=dtype,
device=device,
)
theta2 = torch.tensor(
[[inv_coeffs[6], inv_coeffs[7], 1.0], [inv_coeffs[6], inv_coeffs[7], 1.0]], dtype=dtype, device=device
)
# 1) Let's transform bboxes into a tensor of 4 points (top-left, top-right, bottom-left, bottom-right corners).
# Tensor of points has shape (N * 4, 3), where N is the number of bboxes
# Single point structure is similar to
# [(xmin, ymin, 1), (xmax, ymin, 1), (xmax, ymax, 1), (xmin, ymax, 1)]
points = bounding_boxes[:, [[0, 1], [2, 1], [2, 3], [0, 3]]].reshape(-1, 2)
points = torch.cat([points, torch.ones(points.shape[0], 1, device=points.device)], dim=-1)
# 2) Now let's transform the points using perspective matrices
# x_out = (coeffs[0] * x + coeffs[1] * y + coeffs[2]) / (coeffs[6] * x + coeffs[7] * y + 1)
# y_out = (coeffs[3] * x + coeffs[4] * y + coeffs[5]) / (coeffs[6] * x + coeffs[7] * y + 1)
numer_points = torch.matmul(points, theta1.T)
denom_points = torch.matmul(points, theta2.T)
transformed_points = numer_points.div_(denom_points)
# 3) Reshape transformed points to [N boxes, 4 points, x/y coords]
# and compute bounding box from 4 transformed points:
transformed_points = transformed_points.reshape(-1, 4, 2)
out_bbox_mins, out_bbox_maxs = torch.aminmax(transformed_points, dim=1)
out_bboxes = clamp_bounding_boxes(
torch.cat([out_bbox_mins, out_bbox_maxs], dim=1).to(bounding_boxes.dtype),
format=tv_tensors.BoundingBoxFormat.XYXY,
canvas_size=canvas_size,
)
# out_bboxes should be of shape [N boxes, 4]
return convert_bounding_box_format(
out_bboxes, old_format=tv_tensors.BoundingBoxFormat.XYXY, new_format=format, inplace=True
).reshape(original_shape)
@_register_kernel_internal(perspective, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
def _perspective_bounding_boxes_dispatch(
inpt: tv_tensors.BoundingBoxes,
startpoints: Optional[List[List[int]]],
endpoints: Optional[List[List[int]]],
coefficients: Optional[List[float]] = None,
**kwargs,
) -> tv_tensors.BoundingBoxes:
output = perspective_bounding_boxes(
inpt.as_subclass(torch.Tensor),
format=inpt.format,
canvas_size=inpt.canvas_size,
startpoints=startpoints,
endpoints=endpoints,
coefficients=coefficients,
)
return tv_tensors.wrap(output, like=inpt)
def perspective_mask(
mask: torch.Tensor,
startpoints: Optional[List[List[int]]],
endpoints: Optional[List[List[int]]],
fill: _FillTypeJIT = None,
coefficients: Optional[List[float]] = None,
) -> torch.Tensor:
if mask.ndim < 3:
mask = mask.unsqueeze(0)
needs_squeeze = True
else:
needs_squeeze = False
output = perspective_image(
mask, startpoints, endpoints, interpolation=InterpolationMode.NEAREST, fill=fill, coefficients=coefficients
)
if needs_squeeze:
output = output.squeeze(0)
return output
@_register_kernel_internal(perspective, tv_tensors.Mask, tv_tensor_wrapper=False)
def _perspective_mask_dispatch(
inpt: tv_tensors.Mask,
startpoints: Optional[List[List[int]]],
endpoints: Optional[List[List[int]]],
fill: _FillTypeJIT = None,
coefficients: Optional[List[float]] = None,
**kwargs,
) -> tv_tensors.Mask:
output = perspective_mask(
inpt.as_subclass(torch.Tensor),
startpoints=startpoints,
endpoints=endpoints,
fill=fill,
coefficients=coefficients,
)
return tv_tensors.wrap(output, like=inpt)
@_register_kernel_internal(perspective, tv_tensors.Video)
def perspective_video(
video: torch.Tensor,
startpoints: Optional[List[List[int]]],
endpoints: Optional[List[List[int]]],
interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
fill: _FillTypeJIT = None,
coefficients: Optional[List[float]] = None,
) -> torch.Tensor:
return perspective_image(
video, startpoints, endpoints, interpolation=interpolation, fill=fill, coefficients=coefficients
)
[docs]def elastic(
inpt: torch.Tensor,
displacement: torch.Tensor,
interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
fill: _FillTypeJIT = None,
) -> torch.Tensor:
"""See :class:`~torchvision.transforms.v2.ElasticTransform` for details."""
if torch.jit.is_scripting():
return elastic_image(inpt, displacement=displacement, interpolation=interpolation, fill=fill)
_log_api_usage_once(elastic)
kernel = _get_kernel(elastic, type(inpt))
return kernel(inpt, displacement=displacement, interpolation=interpolation, fill=fill)
elastic_transform = elastic
@_register_kernel_internal(elastic, torch.Tensor)
@_register_kernel_internal(elastic, tv_tensors.Image)
def elastic_image(
image: torch.Tensor,
displacement: torch.Tensor,
interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
fill: _FillTypeJIT = None,
) -> torch.Tensor:
if not isinstance(displacement, torch.Tensor):
raise TypeError("Argument displacement should be a Tensor")
interpolation = _check_interpolation(interpolation)
height, width = image.shape[-2:]
device = image.device
dtype = image.dtype if torch.is_floating_point(image) else torch.float32
# Patch: elastic transform should support (cpu,f16) input
is_cpu_half = device.type == "cpu" and dtype == torch.float16
if is_cpu_half:
image = image.to(torch.float32)
dtype = torch.float32
# We are aware that if input image dtype is uint8 and displacement is float64 then
# displacement will be cast to float32 and all computations will be done with float32
# We can fix this later if needed
expected_shape = (1, height, width, 2)
if expected_shape != displacement.shape:
raise ValueError(f"Argument displacement shape should be {expected_shape}, but given {displacement.shape}")
grid = _create_identity_grid((height, width), device=device, dtype=dtype).add_(
displacement.to(dtype=dtype, device=device)
)
output = _apply_grid_transform(image, grid, interpolation.value, fill=fill)
if is_cpu_half:
output = output.to(torch.float16)
return output
@_register_kernel_internal(elastic, PIL.Image.Image)
def _elastic_image_pil(
image: PIL.Image.Image,
displacement: torch.Tensor,
interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
fill: _FillTypeJIT = None,
) -> PIL.Image.Image:
t_img = pil_to_tensor(image)
output = elastic_image(t_img, displacement, interpolation=interpolation, fill=fill)
return to_pil_image(output, mode=image.mode)
def _create_identity_grid(size: Tuple[int, int], device: torch.device, dtype: torch.dtype) -> torch.Tensor:
sy, sx = size
base_grid = torch.empty(1, sy, sx, 2, device=device, dtype=dtype)
x_grid = torch.linspace((-sx + 1) / sx, (sx - 1) / sx, sx, device=device, dtype=dtype)
base_grid[..., 0].copy_(x_grid)
y_grid = torch.linspace((-sy + 1) / sy, (sy - 1) / sy, sy, device=device, dtype=dtype).unsqueeze_(-1)
base_grid[..., 1].copy_(y_grid)
return base_grid
def elastic_bounding_boxes(
bounding_boxes: torch.Tensor,
format: tv_tensors.BoundingBoxFormat,
canvas_size: Tuple[int, int],
displacement: torch.Tensor,
) -> torch.Tensor:
expected_shape = (1, canvas_size[0], canvas_size[1], 2)
if not isinstance(displacement, torch.Tensor):
raise TypeError("Argument displacement should be a Tensor")
elif displacement.shape != expected_shape:
raise ValueError(f"Argument displacement shape should be {expected_shape}, but given {displacement.shape}")
if bounding_boxes.numel() == 0:
return bounding_boxes
# TODO: add in docstring about approximation we are doing for grid inversion
device = bounding_boxes.device
dtype = bounding_boxes.dtype if torch.is_floating_point(bounding_boxes) else torch.float32
if displacement.dtype != dtype or displacement.device != device:
displacement = displacement.to(dtype=dtype, device=device)
original_shape = bounding_boxes.shape
# TODO: first cast to float if bbox is int64 before convert_bounding_box_format
bounding_boxes = (
convert_bounding_box_format(bounding_boxes, old_format=format, new_format=tv_tensors.BoundingBoxFormat.XYXY)
).reshape(-1, 4)
id_grid = _create_identity_grid(canvas_size, device=device, dtype=dtype)
# We construct an approximation of inverse grid as inv_grid = id_grid - displacement
# This is not an exact inverse of the grid
inv_grid = id_grid.sub_(displacement)
# Get points from bboxes
points = bounding_boxes[:, [[0, 1], [2, 1], [2, 3], [0, 3]]].reshape(-1, 2)
if points.is_floating_point():
points = points.ceil_()
index_xy = points.to(dtype=torch.long)
index_x, index_y = index_xy[:, 0], index_xy[:, 1]
# Transform points:
t_size = torch.tensor(canvas_size[::-1], device=displacement.device, dtype=displacement.dtype)
transformed_points = inv_grid[0, index_y, index_x, :].add_(1).mul_(0.5 * t_size).sub_(0.5)
transformed_points = transformed_points.reshape(-1, 4, 2)
out_bbox_mins, out_bbox_maxs = torch.aminmax(transformed_points, dim=1)
out_bboxes = clamp_bounding_boxes(
torch.cat([out_bbox_mins, out_bbox_maxs], dim=1).to(bounding_boxes.dtype),
format=tv_tensors.BoundingBoxFormat.XYXY,
canvas_size=canvas_size,
)
return convert_bounding_box_format(
out_bboxes, old_format=tv_tensors.BoundingBoxFormat.XYXY, new_format=format, inplace=True
).reshape(original_shape)
@_register_kernel_internal(elastic, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
def _elastic_bounding_boxes_dispatch(
inpt: tv_tensors.BoundingBoxes, displacement: torch.Tensor, **kwargs
) -> tv_tensors.BoundingBoxes:
output = elastic_bounding_boxes(
inpt.as_subclass(torch.Tensor), format=inpt.format, canvas_size=inpt.canvas_size, displacement=displacement
)
return tv_tensors.wrap(output, like=inpt)
def elastic_mask(
mask: torch.Tensor,
displacement: torch.Tensor,
fill: _FillTypeJIT = None,
) -> torch.Tensor:
if mask.ndim < 3:
mask = mask.unsqueeze(0)
needs_squeeze = True
else:
needs_squeeze = False
output = elastic_image(mask, displacement=displacement, interpolation=InterpolationMode.NEAREST, fill=fill)
if needs_squeeze:
output = output.squeeze(0)
return output
@_register_kernel_internal(elastic, tv_tensors.Mask, tv_tensor_wrapper=False)
def _elastic_mask_dispatch(
inpt: tv_tensors.Mask, displacement: torch.Tensor, fill: _FillTypeJIT = None, **kwargs
) -> tv_tensors.Mask:
output = elastic_mask(inpt.as_subclass(torch.Tensor), displacement=displacement, fill=fill)
return tv_tensors.wrap(output, like=inpt)
@_register_kernel_internal(elastic, tv_tensors.Video)
def elastic_video(
video: torch.Tensor,
displacement: torch.Tensor,
interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
fill: _FillTypeJIT = None,
) -> torch.Tensor:
return elastic_image(video, displacement, interpolation=interpolation, fill=fill)
[docs]def center_crop(inpt: torch.Tensor, output_size: List[int]) -> torch.Tensor:
"""See :class:`~torchvision.transforms.v2.RandomCrop` for details."""
if torch.jit.is_scripting():
return center_crop_image(inpt, output_size=output_size)
_log_api_usage_once(center_crop)
kernel = _get_kernel(center_crop, type(inpt))
return kernel(inpt, output_size=output_size)
def _center_crop_parse_output_size(output_size: List[int]) -> List[int]:
if isinstance(output_size, numbers.Number):
s = int(output_size)
return [s, s]
elif isinstance(output_size, (tuple, list)) and len(output_size) == 1:
return [output_size[0], output_size[0]]
else:
return list(output_size)
def _center_crop_compute_padding(crop_height: int, crop_width: int, image_height: int, image_width: int) -> List[int]:
return [
(crop_width - image_width) // 2 if crop_width > image_width else 0,
(crop_height - image_height) // 2 if crop_height > image_height else 0,
(crop_width - image_width + 1) // 2 if crop_width > image_width else 0,
(crop_height - image_height + 1) // 2 if crop_height > image_height else 0,
]
def _center_crop_compute_crop_anchor(
crop_height: int, crop_width: int, image_height: int, image_width: int
) -> Tuple[int, int]:
crop_top = int(round((image_height - crop_height) / 2.0))
crop_left = int(round((image_width - crop_width) / 2.0))
return crop_top, crop_left
@_register_kernel_internal(center_crop, torch.Tensor)
@_register_kernel_internal(center_crop, tv_tensors.Image)
def center_crop_image(image: torch.Tensor, output_size: List[int]) -> torch.Tensor:
crop_height, crop_width = _center_crop_parse_output_size(output_size)
shape = image.shape
if image.numel() == 0:
return image.reshape(shape[:-2] + (crop_height, crop_width))
image_height, image_width = shape[-2:]
if crop_height > image_height or crop_width > image_width:
padding_ltrb = _center_crop_compute_padding(crop_height, crop_width, image_height, image_width)
image = torch_pad(image, _parse_pad_padding(padding_ltrb), value=0.0)
image_height, image_width = image.shape[-2:]
if crop_width == image_width and crop_height == image_height:
return image
crop_top, crop_left = _center_crop_compute_crop_anchor(crop_height, crop_width, image_height, image_width)
return image[..., crop_top : (crop_top + crop_height), crop_left : (crop_left + crop_width)]
@_register_kernel_internal(center_crop, PIL.Image.Image)
def _center_crop_image_pil(image: PIL.Image.Image, output_size: List[int]) -> PIL.Image.Image:
crop_height, crop_width = _center_crop_parse_output_size(output_size)
image_height, image_width = _get_size_image_pil(image)
if crop_height > image_height or crop_width > image_width:
padding_ltrb = _center_crop_compute_padding(crop_height, crop_width, image_height, image_width)
image = _pad_image_pil(image, padding_ltrb, fill=0)
image_height, image_width = _get_size_image_pil(image)
if crop_width == image_width and crop_height == image_height:
return image
crop_top, crop_left = _center_crop_compute_crop_anchor(crop_height, crop_width, image_height, image_width)
return _crop_image_pil(image, crop_top, crop_left, crop_height, crop_width)
def center_crop_bounding_boxes(
bounding_boxes: torch.Tensor,
format: tv_tensors.BoundingBoxFormat,
canvas_size: Tuple[int, int],
output_size: List[int],
) -> Tuple[torch.Tensor, Tuple[int, int]]:
crop_height, crop_width = _center_crop_parse_output_size(output_size)
crop_top, crop_left = _center_crop_compute_crop_anchor(crop_height, crop_width, *canvas_size)
return crop_bounding_boxes(
bounding_boxes, format, top=crop_top, left=crop_left, height=crop_height, width=crop_width
)
@_register_kernel_internal(center_crop, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
def _center_crop_bounding_boxes_dispatch(
inpt: tv_tensors.BoundingBoxes, output_size: List[int]
) -> tv_tensors.BoundingBoxes:
output, canvas_size = center_crop_bounding_boxes(
inpt.as_subclass(torch.Tensor), format=inpt.format, canvas_size=inpt.canvas_size, output_size=output_size
)
return tv_tensors.wrap(output, like=inpt, canvas_size=canvas_size)
@_register_kernel_internal(center_crop, tv_tensors.Mask)
def center_crop_mask(mask: torch.Tensor, output_size: List[int]) -> torch.Tensor:
if mask.ndim < 3:
mask = mask.unsqueeze(0)
needs_squeeze = True
else:
needs_squeeze = False
output = center_crop_image(image=mask, output_size=output_size)
if needs_squeeze:
output = output.squeeze(0)
return output
@_register_kernel_internal(center_crop, tv_tensors.Video)
def center_crop_video(video: torch.Tensor, output_size: List[int]) -> torch.Tensor:
return center_crop_image(video, output_size)
[docs]def resized_crop(
inpt: torch.Tensor,
top: int,
left: int,
height: int,
width: int,
size: List[int],
interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
antialias: Optional[bool] = True,
) -> torch.Tensor:
"""See :class:`~torchvision.transforms.v2.RandomResizedCrop` for details."""
if torch.jit.is_scripting():
return resized_crop_image(
inpt,
top=top,
left=left,
height=height,
width=width,
size=size,
interpolation=interpolation,
antialias=antialias,
)
_log_api_usage_once(resized_crop)
kernel = _get_kernel(resized_crop, type(inpt))
return kernel(
inpt,
top=top,
left=left,
height=height,
width=width,
size=size,
interpolation=interpolation,
antialias=antialias,
)
@_register_kernel_internal(resized_crop, torch.Tensor)
@_register_kernel_internal(resized_crop, tv_tensors.Image)
def resized_crop_image(
image: torch.Tensor,
top: int,
left: int,
height: int,
width: int,
size: List[int],
interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
antialias: Optional[bool] = True,
) -> torch.Tensor:
image = crop_image(image, top, left, height, width)
return resize_image(image, size, interpolation=interpolation, antialias=antialias)
def _resized_crop_image_pil(
image: PIL.Image.Image,
top: int,
left: int,
height: int,
width: int,
size: List[int],
interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
) -> PIL.Image.Image:
image = _crop_image_pil(image, top, left, height, width)
return _resize_image_pil(image, size, interpolation=interpolation)
@_register_kernel_internal(resized_crop, PIL.Image.Image)
def _resized_crop_image_pil_dispatch(
image: PIL.Image.Image,
top: int,
left: int,
height: int,
width: int,
size: List[int],
interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
antialias: Optional[bool] = True,
) -> PIL.Image.Image:
if antialias is False:
warnings.warn("Anti-alias option is always applied for PIL Image input. Argument antialias is ignored.")
return _resized_crop_image_pil(
image,
top=top,
left=left,
height=height,
width=width,
size=size,
interpolation=interpolation,
)
def resized_crop_bounding_boxes(
bounding_boxes: torch.Tensor,
format: tv_tensors.BoundingBoxFormat,
top: int,
left: int,
height: int,
width: int,
size: List[int],
) -> Tuple[torch.Tensor, Tuple[int, int]]:
bounding_boxes, canvas_size = crop_bounding_boxes(bounding_boxes, format, top, left, height, width)
return resize_bounding_boxes(bounding_boxes, canvas_size=canvas_size, size=size)
@_register_kernel_internal(resized_crop, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
def _resized_crop_bounding_boxes_dispatch(
inpt: tv_tensors.BoundingBoxes, top: int, left: int, height: int, width: int, size: List[int], **kwargs
) -> tv_tensors.BoundingBoxes:
output, canvas_size = resized_crop_bounding_boxes(
inpt.as_subclass(torch.Tensor), format=inpt.format, top=top, left=left, height=height, width=width, size=size
)
return tv_tensors.wrap(output, like=inpt, canvas_size=canvas_size)
def resized_crop_mask(
mask: torch.Tensor,
top: int,
left: int,
height: int,
width: int,
size: List[int],
) -> torch.Tensor:
mask = crop_mask(mask, top, left, height, width)
return resize_mask(mask, size)
@_register_kernel_internal(resized_crop, tv_tensors.Mask, tv_tensor_wrapper=False)
def _resized_crop_mask_dispatch(
inpt: tv_tensors.Mask, top: int, left: int, height: int, width: int, size: List[int], **kwargs
) -> tv_tensors.Mask:
output = resized_crop_mask(
inpt.as_subclass(torch.Tensor), top=top, left=left, height=height, width=width, size=size
)
return tv_tensors.wrap(output, like=inpt)
@_register_kernel_internal(resized_crop, tv_tensors.Video)
def resized_crop_video(
video: torch.Tensor,
top: int,
left: int,
height: int,
width: int,
size: List[int],
interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
antialias: Optional[bool] = True,
) -> torch.Tensor:
return resized_crop_image(
video, top, left, height, width, antialias=antialias, size=size, interpolation=interpolation
)
[docs]def five_crop(
inpt: torch.Tensor, size: List[int]
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
"""See :class:`~torchvision.transforms.v2.FiveCrop` for details."""
if torch.jit.is_scripting():
return five_crop_image(inpt, size=size)
_log_api_usage_once(five_crop)
kernel = _get_kernel(five_crop, type(inpt))
return kernel(inpt, size=size)
def _parse_five_crop_size(size: List[int]) -> List[int]:
if isinstance(size, numbers.Number):
s = int(size)
size = [s, s]
elif isinstance(size, (tuple, list)) and len(size) == 1:
s = size[0]
size = [s, s]
if len(size) != 2:
raise ValueError("Please provide only two dimensions (h, w) for size.")
return size
@_register_five_ten_crop_kernel_internal(five_crop, torch.Tensor)
@_register_five_ten_crop_kernel_internal(five_crop, tv_tensors.Image)
def five_crop_image(
image: torch.Tensor, size: List[int]
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
crop_height, crop_width = _parse_five_crop_size(size)
image_height, image_width = image.shape[-2:]
if crop_width > image_width or crop_height > image_height:
raise ValueError(f"Requested crop size {size} is bigger than input size {(image_height, image_width)}")
tl = crop_image(image, 0, 0, crop_height, crop_width)
tr = crop_image(image, 0, image_width - crop_width, crop_height, crop_width)
bl = crop_image(image, image_height - crop_height, 0, crop_height, crop_width)
br = crop_image(image, image_height - crop_height, image_width - crop_width, crop_height, crop_width)
center = center_crop_image(image, [crop_height, crop_width])
return tl, tr, bl, br, center
@_register_five_ten_crop_kernel_internal(five_crop, PIL.Image.Image)
def _five_crop_image_pil(
image: PIL.Image.Image, size: List[int]
) -> Tuple[PIL.Image.Image, PIL.Image.Image, PIL.Image.Image, PIL.Image.Image, PIL.Image.Image]:
crop_height, crop_width = _parse_five_crop_size(size)
image_height, image_width = _get_size_image_pil(image)
if crop_width > image_width or crop_height > image_height:
raise ValueError(f"Requested crop size {size} is bigger than input size {(image_height, image_width)}")
tl = _crop_image_pil(image, 0, 0, crop_height, crop_width)
tr = _crop_image_pil(image, 0, image_width - crop_width, crop_height, crop_width)
bl = _crop_image_pil(image, image_height - crop_height, 0, crop_height, crop_width)
br = _crop_image_pil(image, image_height - crop_height, image_width - crop_width, crop_height, crop_width)
center = _center_crop_image_pil(image, [crop_height, crop_width])
return tl, tr, bl, br, center
@_register_five_ten_crop_kernel_internal(five_crop, tv_tensors.Video)
def five_crop_video(
video: torch.Tensor, size: List[int]
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
return five_crop_image(video, size)
[docs]def ten_crop(
inpt: torch.Tensor, size: List[int], vertical_flip: bool = False
) -> Tuple[
torch.Tensor,
torch.Tensor,
torch.Tensor,
torch.Tensor,
torch.Tensor,
torch.Tensor,
torch.Tensor,
torch.Tensor,
torch.Tensor,
torch.Tensor,
]:
"""See :class:`~torchvision.transforms.v2.TenCrop` for details."""
if torch.jit.is_scripting():
return ten_crop_image(inpt, size=size, vertical_flip=vertical_flip)
_log_api_usage_once(ten_crop)
kernel = _get_kernel(ten_crop, type(inpt))
return kernel(inpt, size=size, vertical_flip=vertical_flip)
@_register_five_ten_crop_kernel_internal(ten_crop, torch.Tensor)
@_register_five_ten_crop_kernel_internal(ten_crop, tv_tensors.Image)
def ten_crop_image(
image: torch.Tensor, size: List[int], vertical_flip: bool = False
) -> Tuple[
torch.Tensor,
torch.Tensor,
torch.Tensor,
torch.Tensor,
torch.Tensor,
torch.Tensor,
torch.Tensor,
torch.Tensor,
torch.Tensor,
torch.Tensor,
]:
non_flipped = five_crop_image(image, size)
if vertical_flip:
image = vertical_flip_image(image)
else:
image = horizontal_flip_image(image)
flipped = five_crop_image(image, size)
return non_flipped + flipped
@_register_five_ten_crop_kernel_internal(ten_crop, PIL.Image.Image)
def _ten_crop_image_pil(
image: PIL.Image.Image, size: List[int], vertical_flip: bool = False
) -> Tuple[
PIL.Image.Image,
PIL.Image.Image,
PIL.Image.Image,
PIL.Image.Image,
PIL.Image.Image,
PIL.Image.Image,
PIL.Image.Image,
PIL.Image.Image,
PIL.Image.Image,
PIL.Image.Image,
]:
non_flipped = _five_crop_image_pil(image, size)
if vertical_flip:
image = _vertical_flip_image_pil(image)
else:
image = _horizontal_flip_image_pil(image)
flipped = _five_crop_image_pil(image, size)
return non_flipped + flipped
@_register_five_ten_crop_kernel_internal(ten_crop, tv_tensors.Video)
def ten_crop_video(
video: torch.Tensor, size: List[int], vertical_flip: bool = False
) -> Tuple[
torch.Tensor,
torch.Tensor,
torch.Tensor,
torch.Tensor,
torch.Tensor,
torch.Tensor,
torch.Tensor,
torch.Tensor,
torch.Tensor,
torch.Tensor,
]:
return ten_crop_image(video, size, vertical_flip=vertical_flip)